Skip to main content

Functionalized Metallic Nanoparticles: Theranostic Applications

  • Chapter
  • First Online:
Multifunctional And Targeted Theranostic Nanomedicines

Abstract

Metallic nanoparticles such as magnetic (iron, manganese, cobalt, chromium, and nickel), gold, silver, and transition element-based nanoparticles have been extensively studied for the development of new generation cancer therapeutic and diagnostic tools. These metallic nanoparticles are easy to synthesize, surface functionalize, and also possess unique physical and chemical properties which are suitable for theranostic applications. The role of metallic nanoparticles as nanoimaging (fluorescence imaging, magnetic resonance imaging) has been potentially used in detection and diagnosis of cancer at early stage. A multifunctional targeted drug delivery using intrinsic stimuli-responsive (pH, thermal) or extrinsic such as light, heat, and ultrasound has endowed a huge nanoplatform for their therapeutic potential for simultaneous detection (diagnostic) and treatment (therapeutic) of cancer. Moreover, the new development of theranostic hybrid multifunctional nanocarriers has greatly expanded their application in nanomedicines through combining the suitable imaging modalities agents with chemotherapeutic drugs to treat cancer with better, more precise, and minimally invasive approaches. This chapter provides the basic characteristics of multifunctional metallic nanoparticles and their nanotechnological application in theranostics. Finally, we will highlight the future perspective of multifunctional metallic nanoparticles in clinical and nanotechnological cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerman ME et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99(20):12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amendola V et al (2021) Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. J Colloid Interface Sci 596:332

    Article  CAS  PubMed  Google Scholar 

  • Anderson SD et al (2019) Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett 14(1):188

    Article  PubMed  PubMed Central  Google Scholar 

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Anu Mary Ealia S, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP conference series: materials science and engineering, p 263, 032019

    Google Scholar 

  • Bansal SA et al (2020) Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv 2(9):3764

    Article  PubMed  PubMed Central  Google Scholar 

  • Chithrani BD et al (2006) Determining the size and shape dependence of gold nanoparticle uptake into Mammalian cells. Nano Lett 6(4):662

    Article  CAS  PubMed  Google Scholar 

  • Cobb M (2018) Black pepper consumption in the Roman Empire. J Econ Soc Hist Orient 61(4):519–559. https://www.jstor.org/stable/26572314

    Article  Google Scholar 

  • Corem-Salkmon E et al (2011) Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomedicine 6:1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L et al (2015) NIR light responsive core–shell nanocontainers for drug delivery. J Mater Chem B 3(35):7046

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed IH et al (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829

    Article  CAS  PubMed  Google Scholar 

  • Enrico C (2020) Nanomedicine strategies for chemoresistance breast cancer theranostics. In: Thorat ND, Bauer J (eds) Nanomedicines for breast cancer theranostics. Elsevier, p 175

    Chapter  Google Scholar 

  • Fang W et al (2020) MRI enhancement and tumor targeted drug delivery using Zn2+-Doped Fe3O4 core/mesoporous silica shell nanocomposites. ACS Appl Bio Mater 3(3):1690

    Article  CAS  PubMed  Google Scholar 

  • Fedoryshin LL et al (2014) Near-infrared-triggered anticancer drug release from upconverting nanoparticles. ACS Appl Mater Interfaces 6(16):13600

    Article  CAS  PubMed  Google Scholar 

  • Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 1(4):441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaihre B et al (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365(1):180

    Article  CAS  PubMed  Google Scholar 

  • Giannaccini M et al (2014) Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE). Int J Mol Sci 15:1

    Article  Google Scholar 

  • Gnanasammandhan MK et al (2016) Near-IR photoactivation using mesoporous silica–coated NaYF4:Yb,Er/Tm upconversion nanoparticles. Nat Protoc 11(4):688

    Article  CAS  PubMed  Google Scholar 

  • Guo D et al (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47(1):013001

    Article  Google Scholar 

  • Gurunathan S et al (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31):6341

    Article  CAS  PubMed  Google Scholar 

  • Häfeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277(1–2):19

    Article  PubMed  Google Scholar 

  • Hainfeld JF et al (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248

    Article  CAS  PubMed  Google Scholar 

  • He X et al (2012) Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties. Langmuir 28(32):11929

    Article  CAS  PubMed  Google Scholar 

  • He S et al (2015) Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem Commun 51(2):431

    Article  CAS  Google Scholar 

  • Huang X et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115

    Article  CAS  PubMed  Google Scholar 

  • Hussein-Al-Ali SH et al (2022) Preparation and characterisation of ciprofloxacin-loaded silver nanoparticles for drug delivery. IET Nanobiotechnol

    Google Scholar 

  • Jeong S et al (2016) Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano 10(2):1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin R et al (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz H et al (2020) pH-Sensitive magnetite mesoporous silica nanocomposites for controlled drug delivery and hyperthermia. RSC Adv 10(64):39008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan I et al (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908

    Article  CAS  Google Scholar 

  • Khodashenas B, Ghorbani HR (2019) Synthesis of silver nanoparticles with different shapes. Arab J Chem 12(8):1823

    Article  CAS  Google Scholar 

  • Khoshnevisan K et al (2018) The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target 26(7):525

    Article  CAS  PubMed  Google Scholar 

  • Kim DI et al (2020) Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv Healthc Mater 9(13):e2000118

    Article  PubMed  Google Scholar 

  • Kim Y et al (2022) Manipulating nanoparticle aggregates regulates receptor–ligand binding in macrophages. J Am Chem Soc 144(13):5769

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Mitragotri S (2020) Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv Drug Deliv Rev 153:87

    Article  CAS  PubMed  Google Scholar 

  • Lee S et al (2021) Magnetic control and real-time monitoring of stem cell differentiation by the ligand nanoassembly. Small 17(41):2102892

    Article  CAS  Google Scholar 

  • Li L et al (2013) Multifunctional magnetic–fluorescent eccentric-(concentric-Fe3O4@SiO2)@polyacrylic acid core–shell nanocomposites for cell imaging and pH-responsive drug delivery. Nanoscale 5(6):2249

    Article  CAS  PubMed  Google Scholar 

  • Li M et al (2014) NIR-triggered drug release from switchable rotaxane-functionalized silica-covered Au nanorods. Chem Commun 50(68):9745

    Article  CAS  Google Scholar 

  • Li Y et al (2018) Silver nanoparticles for enhanced cancer theranostics: in vitro and in vivo perspectives. J Biomed Nanotechnol 14(9):1515

    Article  CAS  PubMed  Google Scholar 

  • Lin Q et al (2012) Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein. J Am Chem Soc 134(11):5052

    Article  CAS  PubMed  Google Scholar 

  • Lin Q et al (2013) Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv Mater 25(14):1981

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2013) NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew Chem Int Ed 52(16):4375

    Article  CAS  Google Scholar 

  • Male D et al (2016) Gold nanoparticles for imaging and drug transport to the CNS. Int Rev Neurobiol 130:155

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan K et al (2019) Biologically synthesized silver nanoparticles against pathogenic bacteria: synthesis, calcination and characterization. Biocatal Agric Biotechnol 22:101373

    Article  Google Scholar 

  • McQuillan JS et al (2012) Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6:857

    Article  CAS  PubMed  Google Scholar 

  • Merg AD et al (2017) Ligand exchange for controlling the surface chemistry and properties of nanoparticle superstructures. Chem Nano Mat 3(10):745

    CAS  Google Scholar 

  • Neamtu M et al (2018) Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci Rep 8(1):6278

    Article  PubMed  PubMed Central  Google Scholar 

  • Neha D et al (2021) Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 18(9):1261

    Article  Google Scholar 

  • Nguyen KT et al (2021) A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval. Adv Healthc Mater 10(6):e2001681

    Article  PubMed  Google Scholar 

  • Nieves LM et al (2021) Silver telluride nanoparticles as biocompatible and enhanced contrast agents for X-ray imaging: an in vivo breast cancer screening study. Nanoscale 13(1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly JP et al (2005) Interfacial pH at an isolated silica−water surface. J Am Chem Soc 127(6):1632

    Article  PubMed  Google Scholar 

  • Park MV et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810

    Article  CAS  PubMed  Google Scholar 

  • Patel KD et al (2022) Recent advances in drug delivery systems for glaucoma treatment. Mater Today Nano 18:100178

    Article  CAS  Google Scholar 

  • Pissuwan D et al (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149(1):65

    Article  CAS  PubMed  Google Scholar 

  • Qian HS et al (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285

    Article  CAS  PubMed  Google Scholar 

  • Rai M et al (2015) Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharm 496(2):159

    Article  CAS  PubMed  Google Scholar 

  • Raju HB et al (2011) Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS One 6(5):e17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju HB et al (2012) Investigation of nanoparticles using magnetic resonance imaging after intravitreal injection. Clin Exp Ophthalmol 40(1):100

    Article  PubMed  Google Scholar 

  • Ray M, Ghosh K, Singh S, Mondal KC (2016) Folk to functional: an explorative overview of rice-based fermented foods and beverages in India. J Ethn Foods 3(1):5–18. https://doi.org/10.1016/j.jef.2016.02.002

    Article  Google Scholar 

  • Saleh TA (2020) Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

    Article  CAS  Google Scholar 

  • Shang L et al (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12(1):5

    Article  Google Scholar 

  • Singh RK et al (2012) Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A 100A(7):1734

    Article  CAS  Google Scholar 

  • Singh RK et al (2014a) Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl Mater Interfaces 6(4):2201

    Article  CAS  PubMed  Google Scholar 

  • Singh RK et al (2014b) Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLoS One 9(4):e91584

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RK et al (2019) Combinatory cancer therapeutics with nanoceria-capped mesoporous silica nanocarriers through pH-triggered drug release and redox activity. ACS Appl Mater Interfaces 11(1):288

    Article  CAS  PubMed  Google Scholar 

  • Sintubin L et al (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91(1):153

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177

    Article  CAS  PubMed  Google Scholar 

  • Steckiewicz KP et al (2022) Silver nanoparticles as chlorhexidine and metronidazole drug delivery platforms: their potential use in treating periodontitis. Int J Nanomedicine 17:495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J et al (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5(9):3867

    Article  CAS  PubMed  Google Scholar 

  • Torrisi L et al (2018) Gold nanoparticles by laser ablation for X-ray imaging and protontherapy improvements. Recent Pat Nanotechnol 12(1):59

    Article  CAS  PubMed  Google Scholar 

  • Vasquez ES et al (2016) Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. J Nanobiotechnol 14:20

    Article  Google Scholar 

  • Walch EBT, Roos C (2020) Measurement of the mechanical properties of silver and enamel thick films using nanoindentation. Int J Appl Glas Sci 11(1):195

    Article  Google Scholar 

  • Walker M et al (2020) Magnetically triggered release of entrapped bioactive proteins from thermally responsive polymer-coated iron oxide nanoparticles for stem-cell proliferation. ACS Appl Nano Mater 3(6):5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BA et al (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11(9):671

    Article  CAS  PubMed  Google Scholar 

  • Xie X et al (2017) The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci Rep 7(1):3827

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L et al (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20):8996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai A et al (2012) Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant 21(6):1137

    Article  PubMed  Google Scholar 

  • Yang Y et al (2012) In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed 51(13):3125

    Article  CAS  Google Scholar 

  • Yang Y et al (2013) NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 9(17):2937

    Article  CAS  PubMed  Google Scholar 

  • Yang H et al (2020) Developing a general method for encapsulation of metal oxide nanoparticles in mesoporous silica shell by unraveling its formation mechanism. Microporous Mesoporous Mater 305:110381

    Article  CAS  Google Scholar 

  • Yang L et al (2022) Harnessing the therapeutic potential of extracellular vesicles for biomedical applications using multifunctional magnetic nanomaterials. Small 18(13):2104783

    Article  CAS  Google Scholar 

  • Yeh Y-C et al (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871

    Article  CAS  PubMed  Google Scholar 

  • Yin NQ et al (2017) Preparation and study of a mesoporous silica-coated Fe3O4 photothermal nanoprobe. RSC Adv 7(15):9123

    Article  CAS  Google Scholar 

  • Yong KT (2009) Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20(1):015102

    Article  PubMed  Google Scholar 

  • Zhang C et al (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461(1–2):192

    Article  CAS  PubMed  Google Scholar 

  • Zhao L et al (2014) ear-Infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv Funct Mater 24(3):363

    Article  CAS  Google Scholar 

  • Zhu K et al (2018) Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res 51(2):404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Engineering and Physical Science Research Council (EPSRC), the UK, for emPOWER program at the University of Bristol under Grant No. EP/T020792/1.

Conflicts of Interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, K.D., Patel, A.K., Sawadkar, P., Singh, B., Perriman, A.W. (2023). Functionalized Metallic Nanoparticles: Theranostic Applications. In: Jain, K., Jain, N.K. (eds) Multifunctional And Targeted Theranostic Nanomedicines. Springer, Singapore. https://doi.org/10.1007/978-981-99-0538-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0538-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0537-9

  • Online ISBN: 978-981-99-0538-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics