Skip to main content

Theranostic Applications of Functionalized Polymeric Micelles

  • Chapter
  • First Online:
Multifunctional And Targeted Theranostic Nanomedicines
  • 151 Accesses

Abstract

Curiosity in theranostic agents has continuously been growing because of its unique ability of simultaneous detection and therapy. Polymeric micelles are used as diagnostic imaging, drug, biologics, and gene delivery carriers. These nanosized agents can be made from a variety of polymers. Polymeric micelles have some advantages over others, including the ability to load poorly soluble drugs, biocompatibility, longevity, the ability to accumulate in pathological areas with compromised vasculature, high stability, incorporation of imaging contrast agents, ability to change the release of the combined pharmaceutical ingredient, targeted delivery, and so on. In stimuli-responsive therapy, pH-thermo, ultrasound, enzyme, and light-sensitive block copolymers are used. Moreover, surface modification ability makes them suitable for targeting various diseases or targeting intracellular spaces. Additionally, the integration of imaging moiety makes them suitable for their use in in vivo biodistribution studies. Therefore, such “smart,” multifunctional polymeric micelles act as a key to improvising the efficacy of current treatments. Overall, polymeric micelle theranostic nanosystems are a more personalized and effective form of treatment. In the current chapter, we discussed the theranostic use of polymeric micelles in various diseases and theranostic applications of functionalized polymeric micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar ZP (2013) Chapter 2 - Types of nanomaterials and corresponding methods of synthesis in nanomaterials for medical applications. In: Aguilar ZP (ed). Elsevier, pp 33–82

    Google Scholar 

  • Amini MA, Abbasi A, Cai P, Lip H, Gordijo C et al (2018) Combining tumor microenvironment modulating nanoparticles with doxorubicin to enhance chemotherapeutic efficacy and boost antitumor immunity. J Natl Cancer Inst 111:399–408

    Article  Google Scholar 

  • Bodei L, Handkiewicz-Junak D, Grana C, Mazzetta C, Rocca P et al (2004) Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19:65–71

    CAS  PubMed  Google Scholar 

  • Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128:99–112

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Wang L, Cordie T, Vokoun C, Eliceiri KW, Gong S (2015) Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging. Biomaterials 47:41–50

    Article  CAS  PubMed  Google Scholar 

  • Chetoni P, Panichi L, Burgalassi S, Benelli U, Saettone M (2000) Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J Ocular Pharmacol Ther: Off J Assoc Ocular Pharmacol Ther 16:363–372

    Article  CAS  Google Scholar 

  • Chibhabha F, Yang Y, Ying K, Jia F, Zhang Q et al (2020) Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APPswe/PS1ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease. J Mater Chem B 8:7438–7452

    Article  PubMed  Google Scholar 

  • Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH et al (2012) Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 33:6186–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dao P, Ye F, Liu Y, Du ZY, Zhang K et al (2017) Development of phenothiazine-based theranostic compounds that act both as inhibitors of β-amyloid aggregation and as imaging probes for amyloid plaques in Alzheimer’s disease. ACS Chem Neurosci 8:798–806

    Article  CAS  PubMed  Google Scholar 

  • Desser TS, Rubin DL, Muller HH, Qing F, Khodor S et al (1994) Dynamics of tumor imaging with Gd-DTPA-polyethylene glycol polymers: dependence on molecular weight. J Magn Reson Imaging: JMRI 4:467–472

    Article  CAS  PubMed  Google Scholar 

  • Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A (2019) Nanotheranostic pluronic-like polymeric micelles: shedding light into the dark shadows of tumors. Mol Pharm 16:4757–4774

    Article  CAS  PubMed  Google Scholar 

  • Fares AR, ElMeshad AN, Kassem MAA (2018) Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Delivery 25:132–142

    Article  CAS  PubMed  Google Scholar 

  • Francis R, Kumar DS (2016) Biomedical applications of polymeric materials and composites. John Wiley & Sons

    Book  Google Scholar 

  • Ge J, Li M, Zhang Q, Yang CZ, Wooley PH et al (2013) Silica aerogel improves the biocompatibility in a poly caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:402859

    Article  Google Scholar 

  • Gegundez-Arias ME, Ortega C, Garrido J, Ponte B, Alvarez F, Marin D (2016) International conference on bioinformatics and biomedical engineering. Springer, pp 369–379

    Google Scholar 

  • Gregoriou Y, Gregoriou G, Yilmaz V, Kapnisis K, Prokopi M et al (2021) Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics 5:113–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Zhang Y, Zou J, Huang L-P, Chordia MD et al (2019) Synthesis and biological evaluation of genistein-IR783 conjugate: cancer cell targeted delivery in MCF-7 for superior anti-cancer therapy. 24:4120

    Google Scholar 

  • Guo J, Hong H, Chen G, Shi S, Nayak TR et al (2014) Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl Mater Interfaces 6:21769–21779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC (2005) 19F and 1H MRI detection of amyloid β plaques in vivo. Nat Neurosci 8:527–533

    Article  CAS  PubMed  Google Scholar 

  • Howell M, Mallela J, Wang C, Ravi S, Dixit S et al (2013) Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J Control Release: Off J Control Release Soc 167:210–218

    Article  CAS  Google Scholar 

  • Itaka K, Yamauchi K, Harada A, Nakamura K, Kawaguchi H, Kataoka K (2003) Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials 24:4495–4506

    Article  CAS  PubMed  Google Scholar 

  • Jeyamogan S, Khan NA, Siddiqui R (2021) Application and importance of theranostics in the diagnosis and treatment of cancer. Arch Med Res 52:131–142

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Lee J, Seo J-M, Davaa E, Shin K-J, Yang S-G (2022) Enhanced thermodynamic, pharmacokinetic and theranostic properties of polymeric micelles via hydrophobic core-clustering of superparamagnetic iron oxide nanoparticles. Biomater Res 26:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK et al (2022) Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 361:109960

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Park S-J, Lee M-Y, Lim K-G, Hahn SK (2012) Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromol Res 20:277–282

    Article  CAS  Google Scholar 

  • Kong WH, Bae KH, Jo SD, Kim JS, Park TG (2012) Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res 29:362–374

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kulkarni A, Nagesha D, Sridhar S (2012) In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2:714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Yang CY, Peng CL, Wei MF, Chen KC et al (2016) A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 86:92–105

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xu D, Ho SL, Li HW, Yang R, Wong MS (2016) A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation. Biomaterials 94:84–92

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N (2011) Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 32:5167–5176

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li J, Liu F, Feng L, Yu D, Zhang N (2015) Theranostic polymeric micelles for the diagnosis and treatment of hepatocellular carcinoma. J Biomed Nanotechnol 11:613–622

    Article  CAS  PubMed  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–207

    Article  CAS  Google Scholar 

  • Mandal A, Bisht R, Rupenthal ID, Mitra AK (2017) Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release 248:96–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Mi P, Wang F, Nishiyama N, Cabral H (2017) Molecular cancer imaging with polymeric nanoassemblies: from tumor detection to theranostics. Macromol Biosci 17

    Google Scholar 

  • Mokhosi SR, Mdlalose W, Nhlapo A, Singh M (2022) Advances in the synthesis and application of magnetic ferrite nanoparticles for cancer therapy. Pharmaceutics 14

    Google Scholar 

  • Movassaghian S, Merkel OM, Torchilin VP (2015) Applications of polymer micelles for imaging and drug delivery. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 7:691–707

    Article  CAS  Google Scholar 

  • Naqvi S, Maitra AN, Abdin MZ, Akmal M, Arora I, Samim M (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22:3500–3507

    Article  CAS  Google Scholar 

  • Naqvi S, Panghal A, Flora SJS (2020) Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci 14:494

    Article  PubMed  PubMed Central  Google Scholar 

  • Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda CMR, Silva JO, Fernandes RS, Braga AV, Machado RR et al (2020) Encapsulating paclitaxel in polymeric nanomicelles increases antitumor activity and prevents peripheral neuropathy. Biomed Pharmacother 132:110864

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen SC, Chan DPY, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7:53–65

    Article  CAS  Google Scholar 

  • Peng C-L, Shih Y-H, Lee P-C, Hsieh TM-H, Luo T-Y, Shieh M-J (2011) Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 5:5594–5607

    Article  CAS  PubMed  Google Scholar 

  • Pradeep P, Kumar P, Choonara YE, Pillay V (2017) Targeted nanotechnologies for cancer intervention: a patent review (2010–2016). Expert Opin Ther Pat 27:1005–1019

    Article  CAS  PubMed  Google Scholar 

  • Sawant R, Torchilin V (2010) Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example. Methods Mol Biol. (Clifton, N.J.) 624:131–149

    Article  CAS  PubMed  Google Scholar 

  • Shan W, Zhu X, Liu M, Li L, Zhong J et al (2015) Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 9:2345–2356

    Article  CAS  PubMed  Google Scholar 

  • Subramani K, Ahmed W (2012) Nanoparticulate drug delivery systems for oral cancer treatment. In: Emerging nanotechnologies in dentistry. Elsevier, pp 333–345

    Chapter  Google Scholar 

  • Sun X, Bandara N (2019) Applications of reverse micelles technique in food science: a comprehensive review. Trends Food Sci Technol 91:106–115

    Article  CAS  Google Scholar 

  • Thomas D, Lonappan L, Rajith L, Cyriac ST, Girish Kumar K (2013) Quantum Dots (QDs) based fluorescent sensor for the selective determination of nimesulide. J Fluoresc 23:473–478

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Frank-Kamenetsky MD, Wolf GL (1999) CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol 6:61–65

    Article  CAS  PubMed  Google Scholar 

  • Tsai HC, Chang WH, Lo CL, Tsai CH, Chang CH et al (2010) Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials 31:2293–2301

    Article  CAS  PubMed  Google Scholar 

  • Turchi M, Karcz AP, Andersson MP (2022) First-principles prediction of critical micellar concentrations for ionic and nonionic surfactants. J Colloid Interface Sci 606:618–627

    Article  CAS  PubMed  Google Scholar 

  • Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S et al (2018) Polymeric micelles: theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 170:26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikyan I (2013) Prospective of 68Ga-radiopharmaceutical development. Theranostics 4:47–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu Z, Li T, Chen L, Lyu J et al (2019) Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. 9:708

    Google Scholar 

  • Xiao Y, Hong H, Javadi A, Engle JW, Xu W et al (2012) Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33:3071–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Ma B, Jiang J, Xiao S, Peng R et al (2020) Integrated prodrug micelles with two-photon bioimaging and pH-triggered drug delivery for cancer theranostics. 7:171–180

    Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. 2013

    Google Scholar 

  • Yang H, Guo J, Tong R, Yang C, Chen JK (2018) pH-sensitive micelles based on star copolymer Ad-(PCL-b-PDEAEMA-b-PPEGMA)4 for controlled drug delivery. Polymers 10

    Google Scholar 

  • Yang T, Yang L, Zhang C, Wang Y, Ma X et al (2016) A copper–amyloid-β targeted fluorescent chelator as a potential theranostic agent for Alzheimer’s disease. Inorg Chem Front 3:1572–1581

    Article  CAS  Google Scholar 

  • Yang Y, Wang S, Zhou Y, Wang X, Liu X et al (2020) Structurally accurate lipophilic Pt(1)Ag(28) nanoclusters based cancer theranostic micelles for dualtargeting/aggregation enhanced fluorescence imaging and photothermal/photodynamic therapies. Colloids Surf B: Biointerfaces 196:111346

    Article  CAS  PubMed  Google Scholar 

  • Yi Y, Lin G, Chen S, Liu J, Zhang H, Mi P (2018) Polyester micelles for drug delivery and cancer theranostics: current achievements, progresses and future perspectives. Mater Sci Eng C 83:218–232

    Article  CAS  Google Scholar 

  • Yoo SP, Pineda F, Barrett JC, Poon C, Tirrell M, Chung EJ (2016) Gadolinium-functionalized peptide amphiphile micelles for multimodal imaging of atherosclerotic lesions. ACS Omega 1:996–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Mi P (2019) 12 - Polymeric micelles for tumor theranostics in theranostic bionanomaterials. In: Cui W, Zhao X (eds). Elsevier, pp 289–302

    Google Scholar 

  • Zhang N, Wardwell PR, Bader RA (2013a) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Tian Y, Li Z, Tian X, Sun H et al (2013b) Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J Am Chem Soc 135:16397–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Cheng P, Chen P, Pu K (2018) Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci 6:746–765

    Article  CAS  PubMed  Google Scholar 

  • Zhuang W, Yang L, Ma B, Kong Q, Li G et al (2019) Multifunctional two-photon AIE luminogens for highly mitochondria-specific bioimaging and efficient photodynamic therapy. ACS Appl Mater Interfaces 11:20715–20724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MSD and BA acknowledge the award of Research Fellowships by the Department of Pharmaceuticals, Ministry of Chemical and Fertilizer, Government of India. The authors acknowledge support from the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India. NIPER-Raebareli communication number for this manuscript is NIPER-R/Communication/328.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Naqvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aiwale, B.S., Deore, M.S., Jain, K., Naqvi, S. (2023). Theranostic Applications of Functionalized Polymeric Micelles. In: Jain, K., Jain, N.K. (eds) Multifunctional And Targeted Theranostic Nanomedicines. Springer, Singapore. https://doi.org/10.1007/978-981-99-0538-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0538-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0537-9

  • Online ISBN: 978-981-99-0538-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics