Skip to main content

Photovoltaic Electrocatalytic Seawater Splitting

  • Chapter
  • First Online:
Photo-Driven Seawater Splitting for Hydrogen Production
  • 304 Accesses

Abstract

Hydrogen generation through photovoltaic electrocatalytic seawater splitting is a highly desirable for economically and cleanly harvesting solar energy. Important developments have come from studies of this technology that focus on enhancing the efficiencies and stabilities of these systems for solar-to-hydrogen (STH) application. Herein, we introduce the fundamental principles of photovoltaic electrocatalytic seawater splitting, and discuss recent progress that has been made in developing improved photovoltaic electrocatalytic seawater splitting strategies for STH conversion, giving major attention to studies aimed at developing the novel electrocatalysts. Finally, some of the remaining challenges in this area and the outlook for future advances are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48:2109–2125

    Article  CAS  Google Scholar 

  2. Liang J, Han X, Qiu Y, Fang Q, Zhang B, Wang W, Zhang J, Ajayan PM, Lou J (2020) A low-cost and high-efficiency integrated device toward solar-driven water splitting. ACS Nano 14:5426–5434

    Article  CAS  Google Scholar 

  3. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430

    Article  CAS  Google Scholar 

  4. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343

    Google Scholar 

  5. Tang J, Liu T, Miao S, Cho Y (2021) Emerging energy harvesting technology for electro/photo-catalytic water splitting application. Catalysts 11:142

    Article  CAS  Google Scholar 

  6. Lu X, Pan J, Lovell E, Tan TH, Ng YH, Amal R (2018) A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy Environ Sci 11:1898–1910

    Article  CAS  Google Scholar 

  7. Tong W, Forster M, Dionigi F, Dresp S, Sadeghi Erami R, Strasser P, Cowan AJ, Farràs P (2020) Electrolysis of low-grade and saline surface water. Nat Energy 5:367–377

    Article  CAS  Google Scholar 

  8. Ying J, Jiang GP, Cano ZP, Han L, Yang XY, Chen ZW (2017) Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy 40:88–94

    Article  CAS  Google Scholar 

  9. Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P (2016) Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. Chemsuschem 9:962–972

    Article  CAS  Google Scholar 

  10. Qi J, Zhang W, Cao R (2018) Solar-to-hydrogen energy conversion based on water splitting. Adv Energy Mater 8:1701620

    Article  Google Scholar 

  11. Khan MA, Al-Attas T, Roy S, Rahman MM, Ghaffour N, Thangadurai V, Larter S, Hu JG, Ajayan PM, Kibria MG (2021) Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ Sci 14:4831–4839

    Article  CAS  Google Scholar 

  12. Pu Z, Zhao J, Amiinu IS, Li W, Wang M, He D, Mu S (2019) A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci 12:952–957

    Article  CAS  Google Scholar 

  13. Wang PT, Jiang KZ, Wang GM, Yao JL, Huang XQ (2016) Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem-Int Ed Engl 55:12859–12863

    Article  CAS  Google Scholar 

  14. Xing Z, Han C, Wang D, Li Q, Yang X (2017) Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal 7:7131–7135

    Article  CAS  Google Scholar 

  15. Cao Z, Chen Q, Zhang J, Li H, Jiang Y, Shen S, Fu G, Lu BA, Xie Z, Zheng L (2017) Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat Commun 8:15131

    Article  Google Scholar 

  16. Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X (2017) Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun 8:14580

    Article  CAS  Google Scholar 

  17. Zhao Z, Liu H, Gao W, Xue W, Liu Z, Huang J, Pan X, Huang Y (2018) Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J Am Chem Soc 140:9046–9050

    Article  CAS  Google Scholar 

  18. Cheng X, Li Y, Zheng L, Yan Y, Zhang Y, Chen G, Sun S, Zhang J (2017) Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci 10:2450–2458

    Article  CAS  Google Scholar 

  19. Ramani S, Sarkar S, Vemuri V, Peter SC (2017) Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid. J Mater Chem A 5:11572–11576

    Article  CAS  Google Scholar 

  20. Xie Y, Cai J, Wu Y, Zang Y, Zheng X, Ye J, Cui P, Niu S, Liu Y, Zhu J, Liu X, Wang G, Qian Y (2019) Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv Mater 31:e1807780

    Article  Google Scholar 

  21. Dresp S, Dionigi F, Loos S, de Araujo JF, Spori C, Gliech M, Dau H, Strasser P (2018) Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Adv Energy Mater 8

    Google Scholar 

  22. Dresp S, Dionigi F, Klingenhof M, Strasser P (2019) Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett 4:933–942

    Article  CAS  Google Scholar 

  23. Coridan RH, Nielander AC, Francis SA, McDowell MT, Dix V, Chatman SM, Lewis NS (2015) Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci 8:2886–2901

    Article  CAS  Google Scholar 

  24. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting—materials and challenges. Chem Soc Rev 46:4645–4660

    Article  CAS  Google Scholar 

  25. Li R (2017) Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin J Catal 38:5–12

    Article  Google Scholar 

  26. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, Al-Oqla FM (2019) Photovoltaic applications: status and manufacturing prospects. Renew Sustain Energy Rev 102:318–332

    Article  CAS  Google Scholar 

  27. Liu Y, Yu HZ, Wang Y, Tian G, Zhou L, de Torresi SIC, Ozoemena KI, Yang XY (2022) Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chem Commun 58:6882–6885

    Article  CAS  Google Scholar 

  28. Chen JB, Ying J, Xiao YX, Dong Y, Ozoemena KI, Lenaerts S, Yang XY Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Sci China-Mater

    Google Scholar 

  29. Wang XS, Zheng Y, Sheng WC, Xu ZCJ, Jaroniec M, Qiao SZ (2020) Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today 36:125–138

    Article  CAS  Google Scholar 

  30. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y (2015) Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun 6:5848

    Article  CAS  Google Scholar 

  31. Yu HZ, Wang Y, Ying J, Wu SM, Lu Y, Hu J, Hu JS, Shen L, Xiao YX, Geng W, Chang GG, Janiak C, Li WH, Yang XY (2019) Hydrogen evolution enhancement over a cobalt-based Schottky interface. ACS Appl Mater Interfaces 11:27641–27647

    Article  CAS  Google Scholar 

  32. Wang Z, Ren X, Shi X, Asiri AM, Wang L, Li X, Sun X, Zhang Q, Wang H (2018) A platinum oxide decorated amorphous cobalt oxide hydroxide nanosheet array towards alkaline hydrogen evolution. J Mater Chem A 6:3864–3868

    Google Scholar 

  33. Yu FY, Lang ZL, Yin LY, Feng K, Xia YJ, Tan HQ, Zhu HT, Zhong J, Kang ZH, Li YG (2020) Pt-O bond as an active site superior to Pt(0) in hydrogen evolution reaction. Nat Commun 11:490

    Article  Google Scholar 

  34. Feng Y, Guan Y, Zhang H, Huang Z, Li J, Jiang Z, Gu X, Wang Y (2018) Selectively anchoring Pt single atoms at hetero-interfaces of γ-Al2O3/NiS to promote the hydrogen evolution reaction. J Mater Chem A 6:11783–11789

    Article  CAS  Google Scholar 

  35. Liu G, Xu Y, Yang T, Jiang L (2020) Recent advances in electrocatalysts for seawater splitting. Nano Mater Sci

    Google Scholar 

  36. Zheng J, Sheng WC, Zhuang ZB, Xu XB, Yan YS (2016) Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv 2:e1501602

    Google Scholar 

  37. Anantharaj S, Aravindan V (2020) Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv Energy Mater 10

    Google Scholar 

  38. Tong WM, Forster M, Dionigi F, Dresp S, Erami RS, Strasser P, Cowan AJ, Farras P (2021) Electrolysis of low-grade and saline surface water (vol 5, pg 367, 2020). Nat Energy 6:935–935

    Article  Google Scholar 

  39. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH (2021) Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 33:e2007100

    Article  Google Scholar 

  40. Jin HY, Guo CX, Liu X, Liu JL, Vasileff A, Jiao Y, Zheng Y, Qiao SZ (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118:6337–6408

    Article  CAS  Google Scholar 

  41. Liu YW, Xiao C, Huang PC, Cheng M, Xie Y (2018) Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 4:1263–1283

    Article  CAS  Google Scholar 

  42. Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS (2019) Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater 9

    Google Scholar 

  43. Li XM, Hao XG, Abudula A, Guan GQ (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973–12000

    Article  CAS  Google Scholar 

  44. Oh BS, Oh SG, Hwang YY, Yu HW, Kang JW, Kim IS (2010) Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Sci Total Environ 408:5958–5965

    Article  CAS  Google Scholar 

  45. Zheng JJ (2017) Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts. Appl Surf Sci 413:360–365

    Article  CAS  Google Scholar 

  46. Liu E, Li J, Jiao L, Doan HTT, Liu Z, Zhao Z, Huang Y, Abraham KM, Mukerjee S, Jia Q (2019) Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts. J Am Chem Soc 141:3232–3239

    Article  CAS  Google Scholar 

  47. Katsounaros I, Meier JC, Klemm SO, Topalov AA, Biedermann PU, Auinger M, Mayrhofer KJJ (2011) The effective surface pH during reactions at the solid-liquid interface. Electrochem Commun 13:634–637

    Article  CAS  Google Scholar 

  48. Zhang L-N, Li R, Zang H-Y, Tan H-Q, Kang Z-H, Wang Y-H, Li Y-G (2021) Advanced hydrogen evolution electrocatalysts promising sustainable hydrogen and chlor-alkali co-production. Energy Environ Sci 14:6191–6210

    Article  CAS  Google Scholar 

  49. Zhuang L, Li J, Wang K, Li Z, Zhu M, Xu Z (2022) Structural buffer engineering on metal oxide for long‐term stable seawater splitting. Adv Funct Mater 32

    Google Scholar 

  50. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  51. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801

    Article  CAS  Google Scholar 

  52. Steinfeld A (2005) Solar thermochemical production of hydrogen—a review. Sol Energy 78:603–615

    Article  CAS  Google Scholar 

  53. Rosen MA (2010) Advances in hydrogen production by thermochemical water decomposition: a review. Energy 35:1068–1076

    Article  CAS  Google Scholar 

  54. Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H (2012) Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv Energy Mater 2:425–429

    Article  CAS  Google Scholar 

  55. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  Google Scholar 

  56. Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8:2791–2796

    Article  CAS  Google Scholar 

  57. Khaselev, Turner (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science (New York, N.Y.) 280:425–427

    Google Scholar 

  58. Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S, Makita K, Sugaya T, Matsui T, Fujita D, Tosa M, Kondo M, Kitamori T (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5

    Google Scholar 

  59. Luo JS, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Gratzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345:1593–1596

    Google Scholar 

  60. Hsu S-H, Miao J, Zhang L, Gao J, Wang H, Tao H, Hung S-F, Vasileff A, Qiao SZ, Liu B (2018) An Earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv Mater 30:1707261

    Google Scholar 

  61. Kuang Y, Kenney MJ, Meng Y, Hung W-H, Liu Y, Huang JE, Prasanna R, Li P, Li Y, Wang L, Lin M-C, McGehee MD, Sun X, Dai H (2019) Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc Natl Acad Sci USA 116:6624–6629

    Article  CAS  Google Scholar 

  62. Wu Y, Tian Z, Yuan S, Qi Z, Feng Y, Wang Y, Huang R, Zhao Y, Sun J, Zhao W, Guo W, Feng J, Sun J (2021) Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures. Chem Eng J 411:128538

    Article  CAS  Google Scholar 

  63. Kumari S, Turner White R, Kumar B, Spurgeon JM (2016) Solar hydrogen production from seawater vapor electrolysis. Energy Environ Sci 9:1725–1733

    Article  CAS  Google Scholar 

  64. Shen L, Ying J, Ozoemena KI, Janiak C, Yang XY (2022) Confinement effects in individual carbon encapsulated nonprecious metal-based electrocatalysts. Adv Funct Mater 32

    Google Scholar 

  65. Ying J, Li J, Jiang GP, Cano ZP, Ma Z, Zhong C, Su D, Chen ZW (2018) Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Appl Catal B-Environ 225:496–503

    Article  CAS  Google Scholar 

  66. Ying J, Lenaerts S, Symes MD, Yang XY Hierarchical design in nanoporous metals. Adv Sci

    Google Scholar 

  67. Ying J, Hu ZY, Yang XY, Wei H, Xiao YX, Janiak C, Mu SC, Tian G, Pan M, Van Tendeloo G, Su BL (2016) High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chem Commun 52:8219–8222

    Article  CAS  Google Scholar 

  68. Davis JT, Qi J, Fan X, Bui JC, Esposito DV (2018) Floating membraneless PV-electrolyzer based on buoyancy-driven product separation. Int J Hydrogen Energy 43:1224–1238

    Article  CAS  Google Scholar 

  69. Gao X, Chen Y, Sun T, Huang J, Zhang W, Wang Q, Cao R (2020) Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ Sci 13:174–182

    Article  CAS  Google Scholar 

  70. Gnanasekar P, Eswaran MK, Palanichamy G, Ng TK, Schwingenschlögl U, Ooi BS, Kulandaivel J (2021) Sustained solar-powered electrocatalytic H2 production by seawater splitting using two-dimensional vanadium disulfide. ACS Sustain Chem Eng 9:8572–8580

    Article  CAS  Google Scholar 

  71. Kim C, Lee S, Kim SH, Park J, Kim S, Kwon S-H, Bae J-S, Park YS, Kim Y (2021) Cobalt–iron–phosphate hydrogen evolution reaction electrocatalyst for solar-driven alkaline seawater electrolyzer. Nanomaterials 11:2989

    Article  CAS  Google Scholar 

  72. Wang Z, Xu W, Yu K, Feng Y, Zhu Z (2020) 2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting. Nanoscale 12:6176–6187

    Article  Google Scholar 

  73. Liu Y, Liu X, Wang X, Ning H, Yang T, Yu J, Kumar A, Luo Y, Wang H, Wang L, Lee J, Jadhav AR, Hu H, Wu M, Kim MG, Lee H (2021) Unraveling the synergy of chemical hydroxylation and the physical heterointerface upon improving the hydrogen evolution kinetics. ACS Nano 15:15017–15026

    Article  CAS  Google Scholar 

  74. Miller OD, Yablonovitch E, Kurtz SR (2012) Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J Photovolt 2:303–311

    Article  Google Scholar 

  75. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  Google Scholar 

  76. Dong Y, Ying J, Xiao YX, Chen JB, Yang XY (2021) Highly dispersed Pt nanoparticles embedded in N-doped porous carbon for efficient hydrogen evolution. Chem-Asian J 16:1878–1881

    Article  CAS  Google Scholar 

  77. Jia MP, Shen L, Tian G, de Torresi SIC, Symes MD, Yang XY Superior electrocatalysis delivered by a directional electron transfer cascade in hierarchical CoNi/Ru@C. Chem-Asian J

    Google Scholar 

  78. Xu J, Liu T, Li J, Li B, Liu Y, Zhang B, Xiong D, Amorim I, Li W, Liu L (2018) Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ Sci 11:1819–1827

    Article  CAS  Google Scholar 

  79. Xiao YX, Ying J, Tian G, Yang X, Zhang YX, Chen JB, Wang Y, Symes MD, Ozoemena KI, Wu JS, Yang XY (2021) Hierarchically fractal PtPdCu sponges and their directed mass- and electron-transfer effects. Nano Lett 21:7870–7878

    Article  CAS  Google Scholar 

  80. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruna HD (2013) Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    Article  CAS  Google Scholar 

  81. Wang Y, Yu HZ, Ying J, Tian G, Liu Y, Geng W, Hu J, Lu Y, Chang GG, Ozoemena KI, Janiak C, Yang XY (2021) Ultimate corrosion to Pt-Cu electrocatalysts for enhancing methanol oxidation activity and stability in acidic media. Chem-Eur J 27:9124–9128

    Article  CAS  Google Scholar 

  82. Xiao YX, Ying J, Tian G, Zhang XQ, Janiak C, Ozoemena KI, Yang XY (2021) PtPd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chem Commun 57:986–989

    Article  CAS  Google Scholar 

  83. Xiao Y-X, Ying J, Tian G, Tao Y, Wei H, Fan S-Y, Sun Z-H, Zou W-J, Hu J, Chang G-G (2019) Highly dispersed PtPd on graphitic nanofibers and its heavy d-π effect. Appl Catal B 259:118080

    Article  CAS  Google Scholar 

  84. Zhao G, Rui K, Dou SX, Sun W (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 28

    Google Scholar 

  85. Yan Y, Zhang R, Yu Y, Sun Z, Che R, Wei B, LaGrow AP, Wang Z, Zhou W (2021) Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability. Appl Catal B: Environ 291

    Google Scholar 

  86. Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934

    Article  CAS  Google Scholar 

  87. Ying J, Jiang GP, Cano ZP, Ma Z, Chen ZW (2018) Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Appl Catal B-Environ 236:359–367

    Article  CAS  Google Scholar 

  88. Ying J, Yang XY, Hu ZY, Mu SC, Janiak C, Geng W, Pan M, Ke X, Van Tendeloo G, Su BL (2014) One particle@one cell: highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy 8:214–222

    Article  CAS  Google Scholar 

  89. Ying J (2021) Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Front Chem 9

    Google Scholar 

  90. Xiao YX, Ying J, Chen JB, Dong Y, Yang X, Tian G, Wu JS, Janiak C, Ozoemena KI, Yang XY (2022) Confined ultrafine Pt in porous carbon fibers and their N-enhanced heavy d-π effect. Chem Mater 34:3705–3714

    Article  CAS  Google Scholar 

  91. Shen L, Ying J, Tian G, Jia MP, Yang XY (2021) Ultralong PtPd alloyed nanowires anchored on graphene for efficient methanol oxidation reaction. Chem-Asian J 16:1130–1137

    Article  CAS  Google Scholar 

  92. Buttler A, Spliethoff H (2018) Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew Sustain Energy Rev 82:2440–2454

    Article  CAS  Google Scholar 

  93. Jang SW, Dutta S, Kumar A, Hong YR, Kang H, Lee S, Ryu S, Choi W, Lee IS (2020) Holey Pt nanosheets on NiFe-hydroxide laminates: synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano

    Google Scholar 

  94. Hausmann JN, Schlogl R, Menezes PW, Driess M (2021) Is direct seawater splitting economically meaningful? Energy Environ Sci 14:3679–3685

    Article  CAS  Google Scholar 

  95. Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S (2017) Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrogen Energy 42:30470–30492

    Article  CAS  Google Scholar 

  96. Results ITRfPI

    Google Scholar 

  97. Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2

    Google Scholar 

  98. Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 29

    Google Scholar 

  99. Coro G, Trumpy E (2020) Predicting geographical suitability of geothermal power plants. J Clean Prod 267

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2022YFB3805600, 2022YFB3805604), National Natural Science Foundation of China (22293020), Sino-German Center COVID-19 Related Bilateral Collaborative project (C-0046), FRFCU (2021qntd13), National 111 project (B20002), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Guangdong Basic and Applied Basic Research Foundation (2021A1515111131, 2022A1515010137), and Shenzhen Science and Technology Program (JCYJ20210324142010029, GJHZ20210705143204014, KCXFZ20211020170006010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xuan Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, YX., Yu, F., Yang, X., Yang, XY. (2023). Photovoltaic Electrocatalytic Seawater Splitting. In: Yang, XY. (eds) Photo-Driven Seawater Splitting for Hydrogen Production. Springer, Singapore. https://doi.org/10.1007/978-981-99-0510-2_4

Download citation

Publish with us

Policies and ethics