Skip to main content

Electrocatalytic Seawater Splitting

  • Chapter
  • First Online:
Photo-Driven Seawater Splitting for Hydrogen Production
  • 345 Accesses

Abstract

Seawater electrolysis opens a new opportunity to lower the cost of hydrogen production from current water electrolysis technologies. However, due to the different characters such as the existence of chloride ions and insoluble solids in seawater, the electrocatalysts are suffering from severely degraded activity and stability. This chapter focuses on recent developments made in the field of electrocatalytic seawater splitting. Firstly, the basic principles and features of electrocatalytic seawater splitting are discussed. Secondly, recently reported materials used for the both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for electrocatalytic seawater splitting are described. Then, the current industrialization development of seawater electrolysis is introduced. Finally, several challenges and future perspectives in this field are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP (2008) Hydrogen nexus in a sustainable energy future. Energy Environ Sci 1(1):79

    Google Scholar 

  2. Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges☆. Int J Hydrogen Energy 34(2):615–627

    Article  CAS  Google Scholar 

  3. Brouwer J (2010) On the role of fuel cells and hydrogen in a more sustainable and renewable energy future. Curr Appl Phys 10(2):S9–S17

    Article  Google Scholar 

  4. Marchenko OV, Solomin SV (2015) The future energy: Hydrogen versus electricity. Int J Hydrogen Energy 40(10):3801–3805

    Article  CAS  Google Scholar 

  5. Singh AK, Singh S, Kumar A (2016) Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal Sci Technol 6(1):12–40

    Article  Google Scholar 

  6. Thomas JM, Edwards PP, Dobson PJ, Owen GP (2020) Decarbonising energy: the developing international activity in hydrogen technologies and fuel cells. J Energy Chem 51:405–415

    Article  Google Scholar 

  7. Logan BE, Shi L, Rossi R (2021) Enabling the use of seawater for hydrogen gas production in water electrolyzers. Joule 5(4):760–762

    Article  Google Scholar 

  8. Qazi UY (2022) Future of hydrogen as an alternative fuel for next-generation industrial applications; challenges and expected opportunities. Energies 15(13):4741

    Google Scholar 

  9. Wang C, Shang H, Jin L, Xu H, Du Y (2021) Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale 13(17):7897–7912

    Article  CAS  Google Scholar 

  10. <science.285.5428.687.pdf>

    Google Scholar 

  11. Winebrake JJ, Creswick BP (2003) The future of hydrogen fueling systems for transportation. Technol Forecast Soc Chang 70(4):359–384

    Article  Google Scholar 

  12. Feng W (2004) The future of hydrogen infrastructure for fuel cell vehicles in China and a case of application in Beijing. Int J Hydrogen Energy 29(4):355–367

    Article  CAS  Google Scholar 

  13. Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36(12):4356–4362

    Article  Google Scholar 

  14. Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78(5):661–669

    Article  CAS  Google Scholar 

  15. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934

    Article  CAS  Google Scholar 

  16. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130(1–2):61–76

    Article  CAS  Google Scholar 

  17. Liu G, Xu Y, Yang T, Jiang L (2020) Recent advances in electrocatalysts for seawater splitting. Nano Mater Sci

    Google Scholar 

  18. Khatun S, Hirani H, Roy P (2021) Seawater electrocatalysis: activity and selectivity. J Mater Chem A 9(1):74–86

    Article  CAS  Google Scholar 

  19. Dresp S, Dionigi F, Klingenhof M, Strasser P (2019) Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett 4(4):933–942

    Article  CAS  Google Scholar 

  20. Zhang J, Hu W, Cao S, Piao L (2020) Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res 13(9):2313–2322

    Article  CAS  Google Scholar 

  21. Hausmann JN, Schlögl R, Menezes PW, Driess M (2021) Is direct seawater splitting economically meaningful? Energy Environ Sci 14(7):3679–3685

    Article  CAS  Google Scholar 

  22. Zheng Y, Jiao Y, Vasileff A, Qiao SZ (2018) The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem 57(26):7568–7579

    Article  CAS  Google Scholar 

  23. Chen Z, Duan X, Wei W, Wang S, Ni B-J (2019) Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J Mater Chem A 7(25):14971–15005

    Article  CAS  Google Scholar 

  24. Wang X, Zheng Y, Sheng W, Xu ZJ, Jaroniec M, Qiao S-Z (2020) Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today 36:125–138

    Article  CAS  Google Scholar 

  25. Jiang S, Liu Y, Qiu H, Su C, Shao Z (2022) High selectivity electrocatalysts for oxygen evolution reaction and anti-chlorine corrosion strategies in seawater splitting. Catalysts 12(3):261

    Google Scholar 

  26. <ChemSusChem—2017—Fukuzumi—Fuel Production from Seawater and Fuel Cells Using Seawater.pdf>

    Google Scholar 

  27. Exner KS, Sohrabnejad-Eskan I, Over H (2018) A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catal 8(3):1864–1879

    Article  CAS  Google Scholar 

  28. Wu D, Chen D, Zhu J, Mu S (2021) Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17(39):e2102777

    Google Scholar 

  29. <A universal synthesis strategy for single atom dispersed cobalt_metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values.pdf>

    Google Scholar 

  30. Xiang K, Song Z, Wu D, Deng X, Wang X, You W, Peng Z, Wang L, Luo J-L, Fu X-Z (2021) Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J Mater Chem A 9(10):6316–6324

    Article  CAS  Google Scholar 

  31. Xiao YX, Ying J, Tian G, Yang X, Zhang YX, Chen JB, Wang Y, Symes MD, Ozoemena KI, Wu J, Yang XY (2021) Hierarchically fractal PtPdCu sponges and their directed mass- and electron-transfer effects. Nano Lett 21(18):7870–7878

    Article  CAS  Google Scholar 

  32. Xiao Y-X, Ying J, Chen J-B, Dong Y, Yang X, Tian G, Wu J, Janiak C, Ozoemena KI, Yang X-Y (2022) Confined ultrafine Pt in porous carbon fibers and their N-enhanced heavy d-π effect. Chem Mater 34(8):3705–3714

    Article  CAS  Google Scholar 

  33. Xiao Y-X, Ying J, Tian G, Tao Y, Wei H, Fan S-Y, Sun Z-H, Zou W-J, Hu J, Chang G-G, Li W, Yang X-Y, Janiak C (2019) Highly dispersed PtPd on graphitic nanofibers and its heavy d-π effect. Appl Catal B 259:118080

    Article  CAS  Google Scholar 

  34. Xiao YX, Ying J, Tian G, Zhang XQ, Janiak C, Ozoemena KI, Yang XY (2021) PtPd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chem Commun 57(8):986–989

    Article  CAS  Google Scholar 

  35. Dong Y, Ying J, Xiao YX, Chen JB, Yang XY (2021) Highly dispersed Pt nanoparticles embedded in N-doped porous carbon for efficient hydrogen evolution. Chem Asian J 16(14):1878–1881

    Article  CAS  Google Scholar 

  36. Zheng W, Lee LYS, Wong KY (2021) Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. Nanoscale 13(36):15177–15187

    Article  CAS  Google Scholar 

  37. Zheng J, Zhao Y, Xi H, Li C (2018) Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M = Cr, Fe Co, Ni, Mo) incorporated Pt. RSC Adv 8(17):9423–9429

    Article  CAS  Google Scholar 

  38. Xiu L, Pei W, Zhou S, Wang Z, Yang P, Zhao J, Qiu J (2020) Multilevel hollow MXene tailored low‐Pt catalyst for efficient hydrogen evolution in full‐pH range and seawater. Adv Funct Mater 30(47):1910028

    Google Scholar 

  39. Wang Y, Luo W, Li H, Cheng C (2021) Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction. Nanoscale Adv 3(17):5068–5074

    Article  CAS  Google Scholar 

  40. Wang S, Wang M, Liu Z, Liu S, Chen Y, Li M, Zhang H, Wu Q, Guo J, Feng X, Chen Z, Pan Y (2022) Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl Mater Interfaces 14(13):15250–15258

    Article  CAS  Google Scholar 

  41. Li H, Tang Q, He B, Yang P (2016) Robust electrocatalysts from an alloyed Pt–Ru–M (M = Cr, Fe Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. J Mater Chem A 4(17):6513–6520

    Article  CAS  Google Scholar 

  42. Niu X, Tang Q, He B, Yang P (2016) Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting. Electrochim Acta 208:180–187

    Article  CAS  Google Scholar 

  43. Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z (2019) Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat Commun 10(1):5106

    Google Scholar 

  44. Jiang K, Liu W, Lai W, Wang M, Li Q, Wang Z, Yuan J, Deng Y, Bao J, Ji H (2021) NiFe layered double hydroxide/FeOOH heterostructure nanosheets as an efficient and durable bifunctional electrocatalyst for overall seawater splitting. Inorg Chem 60(22):17371–17378

    Article  CAS  Google Scholar 

  45. Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z, Lyu Z, Feng YP, Wang J, Pennycook SJ (2021) Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv Mater 33(8):e2003846

    Google Scholar 

  46. Zhang Y-C, Han C, Gao J, Pan L, Wu J, Zhu X-D, Zou J-J (2021) NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review. ACS Catal 11(20):12485–12509

    Article  CAS  Google Scholar 

  47. Su Y-Z, Xu Q-Z, Chen G-F, Cheng H, Li N, Liu Z-Q (2015) One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochim Acta 174:1216–1224

    Article  CAS  Google Scholar 

  48. Tran PKL, Tran DT, Malhotra D, Prabhakaran S, Kim DH, Kim NH, Lee JH (2021) Highly effective freshwater and seawater electrolysis enabled by atomic Rh-modulated Co-CoO lateral heterostructures. Small 17(50):e2103826

    Google Scholar 

  49. Lv XW, Liu XL, Suo YJ, Liu YP, Yuan ZY (2021) Identifying the dominant role of pyridinic-N-Mo bonding in synergistic electrocatalysis for ambient nitrogen reduction. ACS Nano

    Google Scholar 

  50. Wang XR, Liu JY, Liu ZW, Wang WC, Luo J, Han XP, Du XW, Qiao SZ, Yang J (208) Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv Mater 30(23):e1800005

    Google Scholar 

  51. <2019-pnas-NiFeNiSx-N-镍网载片状-全解水.pdf>

    Google Scholar 

  52. Ma F, Wang S, Gong X, Liu X, Wang Z, Wang P, Liu Y, Cheng H, Dai Y, Zheng Z, Huang B (2022) Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl Catal B 307:121198

    Article  CAS  Google Scholar 

  53. Jin H, Wang X, Tang C, Vasileff A, Li L, Slattery A, Qiao SZ (2021) Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv Mater 33(13):e2007508

    Google Scholar 

  54. Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao SZ (2018) Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 12(12):12761–12769

    Article  CAS  Google Scholar 

  55. Wu L, Yu L, Zhang F, McElhenny B, Luo D, Karim A, Chen S, Ren Z (2020) Heterogeneous bimetallic phosphide Ni2P‐Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv Funct Mater 31(1):2006484

    Google Scholar 

  56. Liu D, Ai H, Chen M, Zhou P, Li B, Liu D, Du X, Lo KH, Ng KW, Wang SP, Chen S, Xing G, Hu J, Pan H (2021) Multi-phase heterostructure of CoNiP/Cox P for enhanced hydrogen evolution under alkaline and seawater conditions by promoting H2O dissociation. Small 17(17):e2007557

    Google Scholar 

  57. Liu G, Wang M, Xu Y, Wang X, Li X, Liu J, Cui X, Jiang L (2021) Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery. J Power Sources 486:229351

    Article  CAS  Google Scholar 

  58. Wu L, Yu L, McElhenny B, Xing X, Luo D, Zhang F, Bao J, Chen S, Ren Z (2021) Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis. Appl Catal B 294:120256

    Article  CAS  Google Scholar 

  59. Ma Y-Y, Wu C-X, Feng X-J, Tan H-Q, Yan L-K, Liu Y, Kang Z-H, Wang E-B, Li Y-G (2017) Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci 10(3):788–798

    Article  CAS  Google Scholar 

  60. Chen IP, Hsiao CH, Huang JY, Peng YH, Chang CY (2019) Highly efficient hydrogen evolution from seawater by biofunctionalized exfoliated MoS2 quantum dot aerogel electrocatalysts that is superior to Pt. ACS Appl Mater Interfaces 11(15):14159–14165

    Article  CAS  Google Scholar 

  61. Zhang B, Xu W, Liu S, Chen X, Ma T, Wang G, Lu Z, Sun J (2021) Enhanced interface interaction in Cu2S@Ni core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis. J Power Sources 506:230235

    Article  CAS  Google Scholar 

  62. Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z, Wu Z, Chen Y, Cui L, Hu W (2020) Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res 14(4):1149–1155

    Article  Google Scholar 

  63. Liu W, Jiang K, Hu Y, Li Q, Deng Y, Bao J, Lei Y (2021) Zr-doped CoFe-layered double hydroxides for highly efficient seawater electrolysis. J Colloid Interface Sci 604:767–775

    Article  CAS  Google Scholar 

  64. Yu L, Wu L, Song S, McElhenny B, Zhang F, Chen S, Ren Z (2020) Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Lett 5(8):2681–2689

    Article  CAS  Google Scholar 

  65. Rüetschi P, Delahay P (1955) Influence of electrode material on oxygen overvoltage: a theoretical analysis. J Chem Phys 23(3):556–560

    Article  Google Scholar 

  66. Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512

    Article  CAS  Google Scholar 

  67. Gayen P, Saha S, Ramani V (2020) Selective seawater splitting using pyrochlore electrocatalyst. Acs Appl Energ Mater 3(4):3978–3983

    Article  CAS  Google Scholar 

  68. Yang J, Wang Y, Yang J, Pang Y, Zhu X, Lu Y, Wu Y, Wang J, Chen H, Kou Z, Shen Z, Pan Z, Wang J (2022) Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small 18(3):2106187

    Google Scholar 

  69. Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P (2016) Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. Chemsuschem 9(9):962–972

    Article  CAS  Google Scholar 

  70. Park YS, Lee J, Jang MJ, Yang J, Jeong J, Park J, Kim Y, Seo MH, Chen Z, Choi SM (2021) High-performance anion exchange membrane alkaline seawater electrolysis. J Mater Chem A 9(15):9586–9592

    Article  CAS  Google Scholar 

  71. Yu Z-Y, Duan Y, Feng X-Y, Yu X, Gao M-R, Yu S-H (2021) Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 33(31):2007100

    Google Scholar 

  72. Wang C, Zhu M, Cao Z, Zhu P, Cao Y, Xu X, Xu C, Yin Z (2021) Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl Catal B 291:120071

    Article  CAS  Google Scholar 

  73. Chang J, Wang G, Yang Z, Li B, Wang Q, Kuliiev R, Orlovskaya N, Gu M, Du Y, Wang G, Yang Y (2021) Dual-doping and synergism toward high-performance seawater electrolysis. Adv Mater 33(33):2101425

    Google Scholar 

  74. Song HJ, Yoon H, Ju B, Lee D-Y, Kim D-W (2020) Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1–xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal 10(1):702–709

    Article  CAS  Google Scholar 

  75. Jadhav AR, Kumar A, Lee J, Yang T, Na S, Lee J, Luo Y, Liu X, Hwang Y, Liu Y, Lee H (2020) Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. J Mater Chem A 8(46):24501–24514

    Article  CAS  Google Scholar 

  76. Gupta S, Forster M, Yadav A, Cowan AJ, Patel N, Patel M (2020) Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. Acs Appl Energ Mater 3(8):7619–7628

    Article  CAS  Google Scholar 

  77. Jeoung S, Sahgong SH, Kim JH, Hwang SM, Kim Y, Moon HR (2016) Upcycling of nonporous coordination polymers: controllable-conversion toward porosity-tuned N-doped carbons and their electrocatalytic activity in seawater batteries. J Mater Chem A 4(35):13468–13475

    Article  CAS  Google Scholar 

  78. Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z, Wu Z, Chen Y, Cui L, Hu W (2021) Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res 14(4):1149–1155

    Article  CAS  Google Scholar 

  79. Jiang X, Dong Z, Wang J, Zhang N, Xu G-R, Zhang W, Lai J, Li Z, Wang L (2021) Self-assembly of functionalized Echinops-like Rh porous nanostructure electrocatalysts for highly efficient seawater splitting. J Mater Chem C 9(26):8314–8322

    Article  CAS  Google Scholar 

  80. Wang XH, Ling Y, Wu B, Li BL, Li XL, Lei JL, Li NB, Luo HQ (2021) Doping modification, defects construction, and surface engineering: design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting. Nano Energy 87:106160

    Article  CAS  Google Scholar 

  81. Wu D, Chen D, Zhu J, Mu S (2021) Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17(39):2102777

    Google Scholar 

  82. Liu W, Jiang K, Hu Y, Li Q, Deng Y, Bao J, Lei Y (2021) Zr-doped CoFe-layered double hydroxides for highly efficient seawater electrolysis. J Colloid Interf Sci 604:767–775

    Article  CAS  Google Scholar 

  83. Wang B, Lu M, Chen D, Zhang Q, Wang W, Kang Y, Fang Z, Pang G, Feng S (2021) NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J Mater Chem A 9(23):13562–13569

    Article  CAS  Google Scholar 

  84. Wang S, Yang P, Sun X, Xing H, Hu J, Chen P, Cui Z, Zhu W, Ma Z (2021) Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl Catal B 297:120386

    Article  CAS  Google Scholar 

  85. Wu L, Yu L, Zhang F, McElhenny B, Luo D, Karim A, Chen S, Ren Z (2021) Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv Funct Mater 31(1):2006484

    Google Scholar 

  86. Hajjar P, Lacour M-A, Masquelez N, Cambedouzou J, Tingry S, Cornu D, Holade Y (2021) Insights on the electrocatalytic seawater splitting at heterogeneous nickel-cobalt based electrocatalysts engineered from oxidative aniline polymerization and calcination. Molecules 26(19)

    Google Scholar 

  87. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S-Z (2018) Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv Energy Mater 8(29):1801926

    Google Scholar 

  88. Kuang Y, Kenney MJ, Meng Y, Hung W-H, Liu Y, Huang JE, Prasanna R, Li P, Li Y, Wang L, Lin M-C, McGehee MD, Sun X, Dai H (2019) Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc Natl Acad Sci 116(14):6624–6629

    Article  CAS  Google Scholar 

  89. Tran PKL, Tran DT, Malhotra D, Prabhakaran S, Kim DH, Kim NH, Lee JH (2021) Highly effective freshwater and seawater electrolysis enabled by atomic Rh-modulated Co-CoO lateral heterostructures. Small 17(50):2103826

    Google Scholar 

  90. Wu Y, Tian Z, Yuan S, Qi Z, Feng Y, Wang Y, Huang R, Zhao Y, Sun J, Zhao W, Guo W, Feng J, Sun J (2021) Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures. Chem Eng J 411:128538

    Article  CAS  Google Scholar 

  91. Rodney JD, Deepapriya S, Robinson MC, Das SJ, Perumal S, Sivakumar P, Jung H, Kim BC, Raj CJ (2021) Cu1-xRExO (RE = La, Dy) decorated dendritic CuS nanoarrays for highly efficient splitting of seawater into hydrogen and oxygen fuels. Appl Mater Today 24:101079

    Article  Google Scholar 

  92. Zhang Y, Fu C, Fan J, Lv H, Hao W (2021) Preparation of Ti@NiB electrode via electroless plating toward high-efficient alkaline simulated seawater splitting. J Electroanal Chem 901:115761

    Article  CAS  Google Scholar 

  93. Kingson A (2020) Opportunities and challenges of industrialization of hydrogen production from natural seawater 60–68

    Google Scholar 

  94. Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35

    Article  Google Scholar 

  95. Calado G, Castro R (2021) Hydrogen production from offshore wind parks: current situation and future perspectives. Appl Sci 11(12):5561

    Google Scholar 

  96. Dinh VN, Leahy P, McKeogh E, Murphy J, Cummins V (2021) Development of a viability assessment model for hydrogen production from dedicated offshore wind farms. Int J Hydrogen Energy 46(48):24620–24631

    Article  CAS  Google Scholar 

  97. Tong W, Forster M, Dionigi F, Dresp S, Sadeghi Erami R, Strasser P, Cowan AJ, Farràs P (2020) Electrolysis of low-grade and saline surface water. Nat Energy 5(5):367–377

    Article  CAS  Google Scholar 

  98. Yu Z, Xu J, Meng L, Liu L (2021) Efficient hydrogen production by saline water electrolysis at high current densities without the interfering chlorine evolution. J Mater Chem A 9(39):22248–22253

    Article  CAS  Google Scholar 

  99. Farràs P, Strasser P, Cowan AJ (2021) Water electrolysis: direct from the sea or not to be? Joule 5(8):1921–1923

    Article  Google Scholar 

  100. Daiyan R, MacGill I, Amal R (2020) Opportunities and challenges for renewable power-to-X. ACS Energy Lett 5(12):3843–3847

    Article  CAS  Google Scholar 

  101. van Renssen S (2020) The hydrogen solution? Nat Clim Chang 10(9):799–801

    Article  Google Scholar 

  102. Tawiah P, Duer J, Bryant SL, Larter S, O’Brien S, Dong M (2020) CO2 injectivity behaviour under non-isothermal conditions—field observations and assessments from the Quest CCS operation. Int J Greenhouse Gas Control 92:102843

    Article  CAS  Google Scholar 

  103. Idriss H (2021) Toward large‐scale hydrogen production from water: what have we learned and what are the main research hurdles to cross for commercialization? Energy Technol 9(2):2000843

    Google Scholar 

  104. Khan MA, Al-Attas T, Roy S, Rahman MM, Ghaffour N, Thangadurai V, Larter S, Hu J, Ajayan PM, Kibria MG (2021) Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ Sci 14(9):4831–4839

    Article  CAS  Google Scholar 

  105. <comparison_of_lifecycle.pdf>

    Google Scholar 

  106. Bayer P, Saner D, Bolay S, Rybach L, Blum P (2012) Greenhouse gas emission savings of ground source heat pump systems in Europe: a review. Renew Sustain Energy Rev 16(2):1256–1267

    Article  Google Scholar 

  107. <Ayers_2010_ECS_Trans._33_3.pdf>

    Google Scholar 

  108. Jones E, Qadir M, van Vliet MTH, Smakhtin V, Kang SM (2019) The state of desalination and brine production: a global outlook. Sci Total Environ 657:1343–1356

    Article  CAS  Google Scholar 

  109. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 309:197–207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ying, J., Chen, JB., Dong, Y., Yang, XY. (2023). Electrocatalytic Seawater Splitting. In: Yang, XY. (eds) Photo-Driven Seawater Splitting for Hydrogen Production. Springer, Singapore. https://doi.org/10.1007/978-981-99-0510-2_1

Download citation

Publish with us

Policies and ethics