Skip to main content

Optimal Stiffness Design of a Twistable Flapping Rotary Wing in Hovering Flight

  • Conference paper
  • First Online:
Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022) (ICAUS 2022)

Abstract

The flapping rotary wing (FRW) is a novel bio-inspired layout for micro air vehicles, which combines the features of insect-like flapping wings and conventional rotary wings. To date, the impact of wing deformation on the performance of FRW is still underexplored since a numerical solution requires considerable computational resources. Using a reduced-order fluid-structure interaction (FSI) model for hovering FRW and the genetic algorithm, an optimization for the wing-root stiffness (k1) and elastic modulus (E) of twistable FRWs are conducted within flapping frequency (f) = 10–25 Hz and amplitude (θm) = 10°–20°. The optimal k1 and E values to achieve the lift maximum and efficiency maximum at each combination of f and θm are summarized, together with the corresponding passive pitching motion and spanwise twisting. These findings can guide the wing design of hovering FRWs when spanwise twisting dominates the wing deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sane, S.P.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003). https://doi.org/10.1242/jeb.00663

    Article  Google Scholar 

  2. Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014). https://doi.org/10.1103/RevModPhys.86.615

    Article  Google Scholar 

  3. Keennon, M., Klingebiel, K., Won, H.: Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle. AIAA, Nashville, Tennessee (2012)

    Google Scholar 

  4. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013). https://doi.org/10.1126/science.1231806

    Article  Google Scholar 

  5. Phan, H.V., Park, H.C.: Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 6 (2020)

    Google Scholar 

  6. Azuma, A., Azuma, S., Watanabe, I., Furuta, T.: Flight mechanics of a dragonfly. J. Exp. Biol. 116, 79–107 (1984)

    Article  Google Scholar 

  7. Wu, J., Wang, D., Zhang, Y.: Aerodynamic analysis of a flapping rotary wing at a low Reynolds number. AIAA J. 53, 2951–2966 (2015). https://doi.org/10.2514/1.J053845

    Article  Google Scholar 

  8. Wu, J., Zhou, C., Zhang, Y.: Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight. AIAA J. 55, 1265–1278 (2017). https://doi.org/10.2514/1.J055221

    Article  Google Scholar 

  9. Chen, L., Zhou, C., Wu, J.: The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number. Phys. Fluids 32 (2020). https://doi.org/10.1063/1.5130959

  10. Zhou, C., Zhang, Y., Wu, J.: Unsteady aerodynamic forces and power consumption of a micro flapping rotary wing in hovering flight. J. Bionic Eng. 15(2), 298–312 (2018). https://doi.org/10.1007/s42235-018-0023-y

    Article  Google Scholar 

  11. Chen, L., Wu, J., Zhou, C., Hsu, S.-J., Cheng, B.: Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number. Phys. Fluids 30, 051903 (2018). https://doi.org/10.1063/1.5024925

    Article  Google Scholar 

  12. Guo, S., Li, H., Zhou, C., Zhang, Y.L., He, Y., Wu, J.H.: Analysis and experiment of a bio-inspired flyable micro flapping wing rotor. Aerosp. Sci. Technol. 79, 506–517 (2018)

    Article  Google Scholar 

  13. Dong, X., Li, D., Xiang, J., Wang, Z.: Design and experimental study of a new flapping wing rotor micro aerial vehicle. Chin. J. Aeronaut. 33, 3092–3099 (2020). https://doi.org/10.1016/j.cja.2020.04.024

    Article  Google Scholar 

  14. Zhou, C., Wu, J.: Kinematics, deformation, and aerodynamics of a flexible flapping rotary wing in hovering flight. J. Bionic Eng. 18(1), 197–209 (2021). https://doi.org/10.1007/s42235-021-0014-2

    Article  Google Scholar 

  15. Wang, Q., Goosen, J.F.L., van Keulen, F.: An efficient fluid–structure interaction model for optimizing twistable flapping wings. J. Fluids Struct. 73, 82–99 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.06.006

    Article  Google Scholar 

  16. Li, H., Guo, S., Zhang, Y.L., Zhou, C., Wu, J.H.: Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor. Aerosp. Sci. Technol. 63, 167–178 (2017). https://doi.org/10.1016/j.ast.2016.12.025

    Article  Google Scholar 

  17. Bayiz, Y., Ghanaatpishe, M., Fathy, H., Cheng, B.: Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization. Bioinspir Biomim 13, 046002 (2018). https://doi.org/10.1088/1748-3190/aab801

    Article  Google Scholar 

  18. Bhat, S.S., Zhao, J., Sheridan, J., Hourigan, K., Thompson, M.C.: Evolutionary shape optimisation enhances the lift coefficient of rotating wing geometries. J. Fluid Mech. 868, 369–384 (2019). https://doi.org/10.1017/jfm.2019.183

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, M., Cao, H., Zhang, M., Liao, C., Zhou, T.: Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations. Bioinspir Biomim 16, 056004 (2021). https://doi.org/10.1088/1748-3190/ac03bd

    Article  Google Scholar 

  20. Shyy, W., et al.: Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284–327 (2010). https://doi.org/10.1016/j.paerosci.2010.01.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Beijing HIWING Sci. and Tech. Info Inst

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Chen, L., Wang, Y. (2023). Optimal Stiffness Design of a Twistable Flapping Rotary Wing in Hovering Flight. In: Fu, W., Gu, M., Niu, Y. (eds) Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). ICAUS 2022. Lecture Notes in Electrical Engineering, vol 1010. Springer, Singapore. https://doi.org/10.1007/978-981-99-0479-2_34

Download citation

Publish with us

Policies and ethics