Skip to main content

Heavy Metal Pollution in Atmosphere from Vehicular Emission

  • Chapter
  • First Online:
Heavy Metal Toxicity: Environmental Concerns, Remediation and Opportunities

Abstract

The transport sector contributes a significant source of air pollution in metro cities. It emits various types of organic and inorganic pollutants in the form of gaseous or particulate matter into the atmosphere. Heavy metals generated by automobiles can be dangerous to people and the environment because they disrupt ecosystems and contaminate air, water, and soil, and some heavy metals can cause toxicity even at a low amount of exposure. Chromium, nickel, and cadmium can cause cancer in living beings, and their distribution and depositions are heavily influenced by meteorological parameters and topographical factors. Zinc, copper, and lead were released from vehicles, approximately 90% of the overall emitted quantity. So, there is a need for the creation of an efficient sustainable policy and control plan for metropolitan zones, which includes the upgradation of new advanced technologies to reduce the pollutant emission, the implementation of sustainable biofuels, the expansion of the greenbelt development, and the public engagement to increase the quality of air. This chapter will be emphasizing the emission level of heavy metals from (a) various transportation sectors, (b) the type of fuels used in heavy and light vehicles, and (c) the type of tires used in a vehicle and also will extend the health risk assessment of people located near road sites/cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Wahab SA, Yaghi B (2004) Total suspended dust and heavy metal levels emitted from a workplace compared with nearby residential houses. Atmos Environ 38(5):745–750

    Article  CAS  Google Scholar 

  • Abosede IA, Peter OA, Adunola AA et al (2017) Biomass valorization: agricultural waste in environmental protection, phytomedicine and biofuel production. In: Biomass volume estimation and valorization for energy. InTech, Rijeka

    Google Scholar 

  • Acosta JA, Faz A, Kalbitz K et al (2014) Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. J Geochem Explor 1(144):298–305

    Article  Google Scholar 

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Adamiec E, Jarosz-Krzemińska E, Wieszała R et al (2016) Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monit Assess 188(6):1–11

    Article  CAS  Google Scholar 

  • Al-Khashman OA (2007) Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ Geochem Health 29(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Al-Taani AA, Nazzal Y, Howari FM et al (2019) Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE. Environ Earth Sci 78(14):1–13

    Article  CAS  Google Scholar 

  • Apeagyei E, Bank MS, Spengler JD et al (2011) Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos Environ 45(13):2310–2323

    Article  CAS  Google Scholar 

  • Bajgai Y, Hulugalle N, Kristiansen P, McHenry M et al (2013) Developments in fractionation and measurement of soil organic carbon: a review. Open J Soil Sci 2013

    Google Scholar 

  • Baltrėnas HP, Januševičius T, Chlebnikovas A et al (2017) Research into the impact of speed bumps on particulate matter air pollution. Measurement 100:62–67

    Article  Google Scholar 

  • Bica S, Radoslav R, Nicolau I et al (2014) Green belts and the improving of air quality-case study: Timisoara and its surroundings. Bull Univ Agric Sci Vet Med Cluj-Napoca, Vet Med 71(1):8

    Google Scholar 

  • Bourliva A, Christophoridis C, Papadopoulou L et al (2017) Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ Geochem Health 39(3):611–634

    Article  CAS  PubMed  Google Scholar 

  • Button K, Nijkamp P (1997) Social change and sustainable transport. J Transp Geogr 5(3):215–218

    Article  Google Scholar 

  • Cao S, Duan X, Zhao X et al (2014) Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci Total Environ 15(472):1001–1009

    Article  Google Scholar 

  • Chan DSEA, Stachowiak GW (2004) Review of automotive brake friction materials. P I Mech Eng D J Automob Eng 218(9):953–966

    Article  Google Scholar 

  • Chaudhari PR, Gupta R, Gajghate DG, Wate SR et al (2012) Heavy metal pollution of ambient air in Nagpur City. Environ Monit Assess 184(4):2487–2496

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhang Y, Wang H et al (2014) Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol 1(164):47–54

    Article  Google Scholar 

  • Chow JC, Watson JG, Houck JE et al (1994) A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmos Environ 28:3463–3481

    Article  CAS  Google Scholar 

  • Chowdhury R, Apul D, Fry T et al (2010) A life cycle based environmental impacts assessment of construction materials used in road construction. Resour Conserv Recycl 54(4):250–255

    Article  Google Scholar 

  • Councell TB, Duckenfield KU, Landa ER et al (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38(15):4206–4214

    Article  CAS  PubMed  Google Scholar 

  • Dahl A, Gharibi A, Swietlicki E et al (2006) Traffic-generated emissions of ultrafine particles from pavement–tire interface. Atmos Environ 40(7):1314–1323

    Article  CAS  Google Scholar 

  • Davis AP, Shokouhian M, Ni S et al (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 44(5):997–1009

    Article  CAS  PubMed  Google Scholar 

  • Doabi SA, Karami M, Afyuni M et al (2018) Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol Environ Saf 163:153–164

    Article  CAS  PubMed  Google Scholar 

  • Dockery DW, Pope CA, Xu X et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Tan J (2013) Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos Environ 74:93–101

    Article  CAS  Google Scholar 

  • Duong TT, Lee BK (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manag 92(3):554–562

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (1998) Department of Pesticide Regulation. Environmental monitoring, Pest management branch, & California. Environmental Hazards Assessment Program

    Google Scholar 

  • Faiz Y, Tufail M, Javed MT et al (2009) Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway, Pakistan. Microchem J 92(2):186–192

    Article  CAS  Google Scholar 

  • Fauser P, Tjell JC, Bjerg PL et al (1999) Particulate air pollution with emphasis on traffic generated aerosols. Risø National Laboratory

    Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2(5):1

    Google Scholar 

  • Fukuzaki N, Yanaka T, Urushiyama Y et al (1986) Effects of studded tires on roadside airborne dust pollution in Niigata, Japan. Atmos Environ (1967) 20(2):377–386

    Article  CAS  Google Scholar 

  • Gawade A, Deshmukh P, Shivankar V et al (2016) Analysis of roadside dust for heavy metal pollutants in Navi Mumbai. Int J Eng Technol Manage Appl Sci 4:2349–4476

    Google Scholar 

  • Goudarzi G, Alavi N, Geravandi S et al (2018) Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, Southwest Iran. Int J Biometeorol 62(6):1075–1083

    Article  PubMed  Google Scholar 

  • Gualtieri M, Andrioletti M, Vismara C et al (2005) Toxicity of tire debris leachates. Environ Int 31(5):723–730

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena J, Egodawatta P, Ayoko GA et al (2012) Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons. Atmos Environ 54:502–510

    Article  CAS  Google Scholar 

  • Gupta V (2020) Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. In: Environmental concerns and sustainable development. InTech, Rijeka, pp 113–127

    Chapter  Google Scholar 

  • Gustafsson M, Blomqvist G, Gudmundsson A (2008) Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Sci Total Environ 393(2–3):226–240

    Article  CAS  PubMed  Google Scholar 

  • Hare CT (1977) Light-duty diesel emission correction factors for ambient conditions. SAE Paper 770717 (No. CONF-7709217-1). Society of Automotive Engineers, Inc., Warrendale, PA

    Google Scholar 

  • Health Effects Institute (1995) Identifying subgroups of the general population that may be susceptible to short-term increases in particulate air pollution: a time-series study in Montreal, Quebec report 97

    Google Scholar 

  • Hjortenkrans DS, Bergbäck BG, Häggerud AV et al (2008) Transversal immission patterns and leachability of heavy metals in road side soils. J Environ Monit 10(6):739–746

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen Q, Deng M et al (2018) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in Southeast China. J Environ Manag 207:159–168

    Article  CAS  Google Scholar 

  • Hussein T, Johansson C, Karlsson H et al (2008) Factors affecting non-tailpipe aerosol particle emissions from paved roads: on-road measurements in Stockholm, Sweden. Atmos Environ 42(4):688–702

    Article  CAS  Google Scholar 

  • Hwang HM, Fiala MJ, Park D et al (2016) Review of pollutants in urban road dust and stormwater runoff: part 1. Heavy metals released from vehicles. Int J Urban Sci 20(3):334–360

    Article  Google Scholar 

  • Institute of Environmental Conservation and Research (INECAR) (2000) Position paper against mining in Rapu-Rapu. INECAR, Ateneo de Naga University Philippines

    Google Scholar 

  • Izhar S, Goel A, Chakraborty A et al (2016) Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146:582–590

    Article  CAS  PubMed  Google Scholar 

  • Jeba Rajasekhar RV, Bhaskar BV, Kulandaisamy I et al (2001) SPM concentration ambient air of Madurai city. J Environ Sci 5(1):56–61

    Google Scholar 

  • Jena S, Singh G (2016) Assessment of impacts of vehicular emission on ambient air quality along the National Highway-32 at Dhanbad

    Google Scholar 

  • Jena S, Perwez A, Singh G et al (2019) Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environ Geochem Health 41(6):2731–2747

    Article  CAS  PubMed  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367

    Article  CAS  PubMed  Google Scholar 

  • Kannan N (1991) A study on removal of nickel by adsorption on fly ash. Indian J Environ Prot 11(7):514–518

    CAS  Google Scholar 

  • Karlsson H, Lindbom J, Ghafouri B et al (2011) Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study. Chem Res Toxicol 24(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HL, Holgersson Å, Möller L et al (2008) Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem Res Toxicol 21(3):726–731

    Article  CAS  PubMed  Google Scholar 

  • Kebede L, Tulu GS, Lisinge RT et al (2022) Diesel-fueled public transport vehicles and air pollution in Addis Ababa, Ethiopia: effects of vehicle size, age and kilometers travelled. Atmos Environ X 13:100144

    CAS  Google Scholar 

  • Kemp K (2002) Trends and sources for heavy metals in urban atmosphere. Nucl Instrum Methods Phys Res, Sect B 189(1-4):227–232

    Article  CAS  Google Scholar 

  • Kenya National Bureau of Statistics, UNICEF, Kenya Country Office (2017) Childpoverty in Kenya: A multidimensional approach

    Google Scholar 

  • Keshavarzi B, Tazarvi Z, Rajabzadeh MA et al (2015) Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos Environ 1(119):1

    Article  Google Scholar 

  • Kolonel LN (1976) Association of cadmium with renal cancer. Cancer 37(4):1782–1787

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Attri AK, Panis LI et al (2013) Emission estimates of particulate matter and heavy metals from mobile sources in Delhi (India). J Environ Sci Eng 55(2):127–142

    CAS  PubMed  Google Scholar 

  • Kumari S, Jain MK, Elumalai SP et al (2021) Assessment of pollution and health risks of heavy metals in particulate matter and road dust along the road network of Dhanbad, India. J Health Pollut 11(29):210305

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Ho SS, Xue Y (2017) Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: the first comprehensive study in northwestern China. Atmos Environ 161:1–2

    Article  CAS  Google Scholar 

  • Iijima A, Sato K, Yano K (2008) Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ Sci Technol 42(8):2937–2942

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). J Hazard Mater 122(1–2):7–15

    Article  CAS  PubMed  Google Scholar 

  • Liu E, Yan T, Birch G et al (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476:522–531

    Article  PubMed  Google Scholar 

  • Liu P, Ren H, Xu H et al (2018a) Assessment of heavy metal characteristics and health risks associated with PM2.5 in Xi’an, the largest city in northwestern China. Air Qual Atmos Health 11(9):1037–1047

    Article  CAS  Google Scholar 

  • Liu Y, Xing J, Wang S et al (2018b) Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ Pollut 239:544–553

    Article  CAS  PubMed  Google Scholar 

  • Loranger S, Zayed J (1995) Environmental and occupational exposure to manganese: a multimedia assessment. Int Arch Occup Environ Health 67(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Lowenthal DH, Zielinska B, Chow JC et al (1994) Characterization of heavy-duty diesel vehicle emissions. Atmos Environ 28(4):731–743

    Article  CAS  Google Scholar 

  • Luo XS, Ding J, Xu B et al (2012) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 424:88–96

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Xia Q, Yan T et al (2018) Identifying the sources, spatial distributions, and pollution status of heavy metals in soils from the southern coast of Laizhou Bay, eastern China. Hum Ecol Risk Assess Int J 25:1953

    Article  Google Scholar 

  • Madany IM, Akhter MS, Al Jowder OA et al (1994) The correlations between heavy metals in residential indoor dust and outdoor street dust in Bahrain. Environ Int 20(4):483–492

    Article  CAS  Google Scholar 

  • Maher BA, Moore C, Matzka J (2008) Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos Environ 42(2):364–373

    Article  CAS  Google Scholar 

  • McCluggage D (1991) Heavy metal poisoning, NCS magazine, published by the Bird Hospital, CO, USA

    Google Scholar 

  • Meister K, Johansson C, Forsberg B et al (2012) Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ Health Perspect 120(3):431–436

    Article  CAS  PubMed  Google Scholar 

  • Melaku S, Morris V, Raghavan D et al (2008) Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environ Poll 155(1):88–98

    Article  CAS  Google Scholar 

  • Ministry of Petroleum and Natural Gas (MOPNG) (2014) Indian Petroleum and Natural Gas Statistics 2014–15

    Google Scholar 

  • Ministry of Road Transport & Highways Yearbook (2021). https://morth.nic.in/sites/default/files/RTYB-2017-18-2018-19.pdf

  • Nagpure AS, Gurjar BR, Kumar V et al (2016) Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos Environ 127:118–124

    Article  CAS  Google Scholar 

  • Najmeddin A, Keshavarzi B, Moore F et al (2018) Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environ Geochem Health 40(4):1187–1208

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AK, Colls JJ, Baker CJ et al (1999) Dispersion and re-suspension of fine and coarse particulates in an urban street canyon. Sci Total Environ 235(1–3):3–13

    Article  CAS  Google Scholar 

  • Ogwugbu MO, Muhanga W (2005) Investigation of Lead concentration in the blood of people in the Copperbelt Province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Peng X, Shi G, Liu G et al (2017) Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ Pollut 221:335–342

    Article  CAS  PubMed  Google Scholar 

  • Piron-Frenet M, Bureau F, Pineau A et al (1994) Lead accumulation in surface roadside soil: its relationship to traffic density and meteorological parameters. Sci Total Environ 144(1–3):297–304

    Article  CAS  Google Scholar 

  • Popescu V, Bace M, Nedevschi S et al (2011) Lane identification and ego-vehicle accurate global positioning in intersections. In 2011 IEEE intelligent vehicles symposium (IV), pp 870–875

    Google Scholar 

  • Pothumsetty R, Viswam N, Thomas MR et al (2020) Health benefits of shifting from Bharat stage four to Bharat stage six. Int J Behav Healthcare Res 7(2):77–91

    Article  Google Scholar 

  • Pulles T, van der Gon HD, Appelman W et al (2012) Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos Environ 61:641–651

    Article  CAS  Google Scholar 

  • Rahman MS, Khan MDH, Jolly YN et al (2019) Assessing risk to human health for heavy metal contamination through street dust in the southeast Asian megacity: Dhaka, Bangladesh. Sci Total Environ 660:1610–1622

    Article  Google Scholar 

  • Roy S, Gupta SK, Prakash J et al (2019) Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ Sci Pollut Res 26(29):30413–30425

    Article  CAS  Google Scholar 

  • Sansalone JJ, Buchberger SG, Al-Abed SR et al (1996) Fractionation of heavy metals in pavement runoff. Sci Total Environ 189:371–378

    Article  Google Scholar 

  • Schwab O, Bayer P, Juraske R et al (2014) Beyond the material grave: life cycle impact assessment of leaching from secondary materials in road and earth constructions. Waste Manag 34(10):1884–1896

    Article  CAS  PubMed  Google Scholar 

  • Sharma YC, Singh B, Upadhyay SN et al (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–2373

    Article  CAS  Google Scholar 

  • Shi G, Chen Z, Bi C et al (2011) A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos Environ 45(3):764–771

    Article  CAS  Google Scholar 

  • Silbergeld EK (1995) The international dimensions of lead exposure. Int J Occup Environ Health 1(4):336–348

    Article  CAS  PubMed  Google Scholar 

  • Silbergeld EK (1996) Blood Lead levels, scientific misconduct, and the Needleman case: 5. Silbergeld responds. Am J Public Health 86(1):114–115

    Article  PubMed Central  Google Scholar 

  • Silva LI, Yokoyama L, Maia LB et al (2015) Evaluation of bioaccessible heavy metal fractions in PM10 from the metropolitan region of Rio de Janeiro city, Brazil, using a simulated lung fluid. Microchem J 118:266–271

    Article  Google Scholar 

  • Silva SA (2020) Respiratory support for patients with COVID-19 infection. Lancet Respir Med 8(4):e18

    Article  Google Scholar 

  • Song F, Gao Y (2011) Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmos Environ 45(37):6714–6723

    Article  CAS  Google Scholar 

  • Sternbeck J, Sjödin Å, Andréasson K et al (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36(30):4735–4744

    Article  CAS  Google Scholar 

  • Sun J, Peng H, Chen J et al (2016) An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J Clean Prod 112:2625–2631

    Article  CAS  Google Scholar 

  • Suryawanshi PV, Rajaram BS, Bhanarkar AD et al (2016) Determining heavy metal contamination of road dust in Delhi. Atmósfera 29(3):221–234

    CAS  Google Scholar 

  • Suvarapu LN, Seo YK, Baek SO et al (2018) Heavy metals in the Indian atmosphere: a review. Res J Chem Environ 18(8):99–111

    Google Scholar 

  • Tanushree B, Chakraborty S, Bhumika F et al (2011) Heavy metal concentrations in street and leaf deposited dust in Anand City, India. Res J Chem Sci 1:61–66

    Google Scholar 

  • Tian HZ, Zhu CY, Gao JJ (2010) Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15(17):10127–10147

    Article  Google Scholar 

  • Tian HZ, Lu L, Cheng K et al (2012) Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Sci Total Environ 417:148–157

    Article  PubMed  Google Scholar 

  • Union Europian (2002) Heavy metals in wastes. European Commission on Environment

    Google Scholar 

  • U.S. Environmental Protection Agency (2000) Heavy-duty engine and vehicle standards and highway diesel fuel sulfur control requirements, 2000. Regulatory announcement. Washington, DC: U.S. EPA Office of Transportation and Quality, EPA420-F-00-057

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (1989) Risk assessment guidance for superfund. Human Health Evaluation Manual (Part A). Interim Final, vol. I. Washington (DC): EPA/540/1–89/002

    Google Scholar 

  • USEPA (1996) Compilation of air emission factors, Vol. 1: Stationary Point and Area Sources, 5th Edition, AP-42. Section 2.2 Sewage Sludge Incineration. United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA

    Google Scholar 

  • USEPA (2001). www.epa.gov/opptintr/lead/index.html

  • Wang N, Tang L, Pan H et al (2019) A global comparison and assessment of incentive policy on electric vehicle promotion. Sustain Cities Soc 44:597–603

    Article  Google Scholar 

  • Xia L, Gao Y et al (2011) Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in Northeast New Jersey in the US east coast. Atmos Pollut Res 2(1):34–44

    Article  CAS  Google Scholar 

  • Yang B, Shu WS, Ye ZH et al (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52(9):1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yu ZG, Zeng GM et al (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Wang X, Men K et al (2013) Aggregation model-based optimization for electric vehicle charging strategy. IEEE Trans Smart Grid 4(2):1058–1066

    Article  Google Scholar 

  • Zheng N, Liu J, Wang Q et al (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, northeast of China. Sci Total Environ 408(4):726–733

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningombam Linthoingambi Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Devi, N.L. (2023). Heavy Metal Pollution in Atmosphere from Vehicular Emission. In: Singh, R.P., Singh, P., Srivastava, A. (eds) Heavy Metal Toxicity: Environmental Concerns, Remediation and Opportunities. Springer, Singapore. https://doi.org/10.1007/978-981-99-0397-9_9

Download citation

Publish with us

Policies and ethics