Skip to main content

Review on the State of Art in Coating Materials for Bipolar Plates for Hydrogen Production by Water Electrolysis with Proton Exchange Membrane

  • Conference paper
  • First Online:
The Proceedings of the 17th Annual Conference of China Electrotechnical Society (ACCES 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1012))

Included in the following conference series:

  • 1037 Accesses

Abstract

Reducing costs and improving efficiency are the main challenges in the production of green hydrogen through proton exchange membrane (PEM) electrolyzers. Titanium based components such as bipolar plates (BPP) account for the largest proportion of the cost composition. In this paper, some reported anti-corrosion coating materials based on stainless steel substrate for interface contact resistance are reviewed, and a research work with the best durability at present is mainly introduced. This work proposes the use of stainless-steel bipolar plates coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. Titanium coating (50 μm) The stainless-steel substrate is protected from corrosion, and the contact resistance is reduced by nearly an order of magnitude with a 50 times thin niobium coating. Niobium/titanium coated stainless steel bipolar plates can operate in the anode environment under standard electrolytic corrosion conditions for more than 1000 h, showing the potential for long-term operation in PEM electrolyzers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White Paper of Hydrogen Energy and Fuel Cell Industry in China (2019)

    Google Scholar 

  2. Rosen M.A., Koohi-Fayegh, S.S.: The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 1, 10–29 (2016)

    Google Scholar 

  3. Rozain, C., Millet, P.: Electrochemical characterization of polymer electrolyte membrane water electrolysis cells. Electrochim. Acta 131, 160–167 (2014)

    Article  Google Scholar 

  4. Wang, L., et al.: Nanostructured Ir-supported on Ti4O7 as cost effective anode for proton exchange membrane (PEM) electrolyzers. Phys. Chem. Chem. Phys. 18, 4487–4495 (2016)

    Google Scholar 

  5. Lettenmeier, P., et al.: Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chemie 128, 752–756 (2016)

    Article  Google Scholar 

  6. Nong, H.N., et al.: Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chemie 54, 2975–2979 (2015)

    Article  Google Scholar 

  7. Oh, H.-S, Nong, H.N., Reier, T., Gliech, et al.: Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 1–8 (2015)

    Google Scholar 

  8. Reier, T., et al.: Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). Am. Chem. Soc 137, 13031–13040 (2015)

    Article  Google Scholar 

  9. Prices of Chemical Elements, Nuclear-Power, [OL]. https://material-properties.org/prices-of-chemical-elements-kg/. Accessed 08 Feb 2021

  10. Tran, V.-H., et al.: An IrSi oxide film as a highly active water-oxidation catalyst in acidic media. Chem. Commun. 51, 12589–12592 (2015)

    Article  Google Scholar 

  11. Paoli, E., et al.: Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015)

    Google Scholar 

  12. Gago, A.S., et al.: Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers. Power Sources 307, 815–825 (2016)

    Article  Google Scholar 

  13. Wang, J.-T., Wang, W.-W., Wang, C., et al.: Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment. Hydrogen Energy 37, 12069–12073 (2012)

    Article  Google Scholar 

  14. Jung, H.-Y, Huang, S.-Y., Popov, B.N.: High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC). Power Sources 195, 1950–1956 (2010)

    Google Scholar 

  15. Grigoriev, S.A., Millet, P., Volobuev, S.A., Fateev, V.N.: Optimization of porous current collectors for PEM water electrolysers. Hydrogen Energy 34, 4968–4973 (2009)

    Article  Google Scholar 

  16. Lettenmeier, P., Kolb, S., Burggraf, F., Gago, A.S., Friedrich, K.A.: Towards developing a backing layer for proton exchange membrane electrolyzers. Power Sources 311, 153–158 (2016)

    Article  Google Scholar 

  17. Ito, H., Maeda, T., Nakano, A., Kato, A., Yoshida, T.: Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim. Acta 100, 242–248 (2013)

    Article  Google Scholar 

  18. Gago, A.S., et al.: Low cost bipolar plates for large scale PEM electrolyzers. ECS Trans. 64, 1039–1048 (2014)

    Article  Google Scholar 

  19. Kim H.G., Kwa, L.K., Han, W., et al.: The performance and stability of a PEM electrolyzer using 3-D Mesh Hong. In: International Conference on Power and Energy Systems Lecture Notes. Information Technology, 2012,13: 373–379.

    Google Scholar 

  20. Lettenmeier, P., et al.: Coated stainless steel bipolar plates for proton exchange membrane electrolyzers. Electrochem. Soc 163, F3119–F3124 (2016)

    Article  Google Scholar 

  21. Antunes, R.A., Oliveira, M.C.L., Ett, G., et al.: Corrosion of metal bipolar plates for PEM fuel cells: a review. Hydrogen Energy 35, 3632–3647 (2010)

    Google Scholar 

  22. De Oliveira, M.C.L., Ett, G., Antunes, R.A.: Materials selection for bipolar plates for polymer electrolyte membrane fuel cells using the Ashby approach. Power Sources 206, 3–13 (2012)

    Article  Google Scholar 

  23. Yang, C., Wang, J., Xie, X., et al.: Electrochemical behavior of surface treated metal bipolar plates used in passive direct methanol fuel cell. Int. J. Hydrogen Energy 37(1), 867–872 (2012)

    Article  Google Scholar 

  24. Shi, J., et al.: Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC. Int. J. Hydrogen Energy 45, 10050–10058 (2020)

    Article  Google Scholar 

  25. Ren, Y., Zeng, C.: Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process. J. Power Sources 171, 778–782 (2007)

    Article  Google Scholar 

  26. Rojas, N., et al.: Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions. Int. J. Hydrogen Energy 46, 25929–25943 (2020)

    Article  Google Scholar 

  27. Silva, F., et al.: Corrosion resistance of functionally graded TiN/Ti coatings for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 45, 33993–34010 (2020)

    Article  Google Scholar 

  28. Jin, J., Hu, M., Zhao, X.: Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications. Int. J. Hydrogen Energy 45, 23310–23326 (2020)

    Article  Google Scholar 

  29. Wakayama, H., Yamazaki, K.: Low-cost bipolar plates of Ti4O7-coated Ti for water electrolysis with polymer electrolyte membranes. ACS Omega 6, 4161–4166 (2021)

    Article  Google Scholar 

  30. Zhang, P., et al.: ZrC coating modified Ti bipolar plate for proton exchangemembrane fuel cell. Fuel Cells 20, 540–546 (2020)

    Article  Google Scholar 

  31. Bi, F., Peng, L., Yi, P., Lai, X.: Multilayered ZreC/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells. J. Power Sources 314, 58–65 (2016)

    Article  Google Scholar 

  32. Lin, M.-T., Wan, C.-H., Wu, W.: Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti,Zr)N thin films as Metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films 544, 162–169 (2013)

    Google Scholar 

  33. Xu, J., et al.: Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell. J. Alloys Compd. 663, 718–730 (2016)

    Article  Google Scholar 

  34. Wang, X.-Z., Muneshwar, T., Fan, H.-Q., Cadiena, K., Luo, J.-L.: Achieving ultrahigh corrosion resistance and conductive zirconium oxynitride coating on metal bipolar plates by plasma enhanced atomic layer deposition. J. Power Sources 397, 32–36 (2018)

    Article  Google Scholar 

  35. Lettenmeier, P., Gago, A., Friedrich, K.A.: protective coatings for low-cost bipolar plates and current collectors of proton exchange membrane electrolyzers for large scale energy storage from renewables. New Technol. Prot. Coat. 2017, 71–86 (2017)

    Google Scholar 

  36. Lettenmeier P, et al.: A. low-cost and durable bipolar plates for proton exchange membrane electrolyzers. Sci. Rep. 7 (2017)

    Google Scholar 

  37. Zhang, P., et al.: Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell. Surf. Coat. Technol. 397 (2020)

    Google Scholar 

  38. Wang, L., et al.: Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate. J. Power Sources 246, 775–782 (2014)

    Article  Google Scholar 

  39. Wang, L., Sun, J., Lv, Y., Li, S., Ji, S., Wen, Z.: Niobium nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Power Sources 199, 195–200 (2011)

    Article  Google Scholar 

  40. Shi, K., et al.: Corrosion behavior and conductivity of TiNb and TiNbN coated steel for metallic bipolar plates. Appl. Sci. 9, 2568 (2019)

    Article  Google Scholar 

  41. Wang, L., et al.: Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 44, 4940–4950 (2018)

    Article  Google Scholar 

  42. Alishahi, M., et al.: Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells. J. Power Sources 322, 1–9 (2016)

    Article  Google Scholar 

  43. Manso, A., Marzo, F., Garicano, X., Alegre, C., Lozano, A., Barreras, F.: Corrosion behavior of tantalum coatings on AISI 316L stainless steel substrate for bipolar plates of PEM fuel cells. Int. J. Hydrogen Energy 45, 20679–20691 (2019)

    Article  Google Scholar 

  44. Wang, L., et al.: Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell. J. Power Sources 399, 343–349 (2018)

    Article  Google Scholar 

  45. Lædre, S.: Bipolar Plates for PEM Systems. Norwegian University of Science and Technology, Trondheim (2016)

    Google Scholar 

  46. Feng, Q., et al.: A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 366, 35–55 (2017)

    Article  Google Scholar 

  47. Chelghoum, S., Thobym, D., Georg, A, Price, E., Wright, E.: AST protocols For PEM water electrolyis: insight on performances and components degradation. In: 20160127, Grenoble (2016)

    Google Scholar 

  48. Rao, T., Meethal, R., Amrutha, M., Srinivasan, R.: Studies on Group IV and V valve metal corrosion in acidic flouride media. J. Electrochem. Soc. 167, 081505 (2020)

    Google Scholar 

  49. Ushakov, S., Navrotsky, A., Hong, Q.-J., Walle, A.: Carbides and Nitrides of Zirconium and Hafnium. Materials 12, 2728 (2019)

    Google Scholar 

  50. Yi, P., Zhu, L., Dong, C., Xiao, K.: Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell. Surf. Coat. Technol. 363, 198–202 (2019)

    Article  Google Scholar 

  51. Cui, J., et al.: Corrosion resistance of a tungsten modified AISI430 stainless steel bipolar plate for proton exchange membrane fuel cells. RSC Adv. 37, 31367–31373 (2016)

    Article  Google Scholar 

  52. Becker, H., Castanheira, L., Hinds, G.: Local measurement of current collector potential in a polymer electrolyte membrane water electrolyser. J. Power Sources 448, 227563 (2020)

    Google Scholar 

Download references

Acknowledgements

This study is funded by the research and development project of State Grid Corporation of China (name of the project: ‘Research on Key Technology of metal bipolar plates for hydrogen production from PEM electrolyzer’, Project No.: 5419-202158299A-0-0-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengxiang Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Beijing Paike Culture Commu. Co., Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, P. et al. (2023). Review on the State of Art in Coating Materials for Bipolar Plates for Hydrogen Production by Water Electrolysis with Proton Exchange Membrane. In: Yang, Q., Li, J., Xie, K., Hu, J. (eds) The Proceedings of the 17th Annual Conference of China Electrotechnical Society. ACCES 2022. Lecture Notes in Electrical Engineering, vol 1012. Springer, Singapore. https://doi.org/10.1007/978-981-99-0357-3_78

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0357-3_78

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0356-6

  • Online ISBN: 978-981-99-0357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics