Skip to main content

Pseudotyped Viruses for Lyssavirus

  • Chapter
  • First Online:
Pseudotyped Viruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1407))

Abstract

Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABLV:

Australian bat lyssavirus

ARAV:

Aravan virus

BBLV:

Bokeloh bat lyssavirus

CNS:

Central nervous system

DUVV:

Duvenhage virus

EBLV-1:

European bat-1 lyssavirus

EBLV-2:

European bat-2 lyssavirus

FAVN:

Fluorescent antibody virus neutralization

G:

Glycoprotein

GBLV:

Gannoruwa bat lyssavirus

HIV:

Human immunodeficiency virus

IKOV:

Ikoma lyssavirus

IRKV:

Irkut virus

KBLV:

Kotalahti bat lyssavirus

KHUV:

Khujand virus

LBV:

Lagos bat virus

LLEBV:

Lleida bat lyssavirus

MLV:

Murine leukemia virus

MOKV:

Mokola virus

PEP:

Post-exposure prophylaxis

PNGS:

Potential N-linked glycosylation site

RABV:

Rabies virus

RFFIT:

Rapid fluorescent focus inhibition test

RNP:

Ribonucleoprotein complex

SHIBV:

Shimoni bat virus

TWBLV:

Taiwan bat lyssavirus

VSV:

Vesicular stomatitis virus

WCBV:

West Caucasian bat virus

References

  1. Horton, D.L., et al.: Quantifying antigenic relationships among the lyssaviruses. J. Virol. 84, 11841–11848 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuzmin, I.V., et al.: Possible emergence of West Caucasian bat virus in Africa. Emerg. Infect. Dis. 14, 1887–1889 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fooks, A.: The challenge of new and emerging lyssaviruses. Expert Rev. Vaccines. 3, 333–336 (2004)

    Article  PubMed  Google Scholar 

  4. Brookes, S.M., Healy, D.M., Fooks, A.R.: Ability of rabies vaccine strains to elicit cross-neutralising antibodies. Dev. Biol. 125, 185–193 (2006)

    CAS  Google Scholar 

  5. Nolden, T., et al.: Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus. J. Gen. Virol. 95, 1647–1653 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanlon, C.A., et al.: Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res. 111, 44–54 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Brookes, S.M., Parsons, G., Johnson, N., McElhinney, L.M., Fooks, A.R.: Rabies human diploid cell vaccine elicits cross-neutralising and cross-protecting immune responses against European and Australian bat lyssaviruses. Vaccine. 23, 4101–4109 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Horton, D.L., et al.: Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus. J. Gen. Virol. 95, 1025–1032 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Badrane, H., Bahloul, C., Perrin, P., Tordo, N.: Evidence of two lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J. Virol. 75, 3268–3276 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faber, M., et al.: Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc. Natl. Acad. Sci. U. S. A. 101, 16328–16332 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finke, S., Granzow, H., Hurst, J., Pollin, R., Mettenleiter, T.C.: Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation. J. Virol. 84, 1816–1827 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Pulmanausahakul, R., Li, J., Schnell, M.J., Dietzschold, B.: The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J. Virol. 82, 2330–2338 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. Yamada, K., et al.: Serial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virus. Virus Res. 165, 34–45 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Hamamoto, N., et al.: Association between RABV G proteins transported from the perinuclear space to the cell surface membrane and N-glycosylation of the Sequon Asn(204). Jpn. J. Infect. Dis. 68, 387–393 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Yamada, K., et al.: Addition of a single N-glycan to street rabies virus glycoprotein enhances virus production. J. Gen. Virol. 94, 270–275 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Yamada, K., Noguchi, K., Nishizono, A.: Characterization of street rabies virus variants with an additional N-glycan at position 247 in the glycoprotein. Arch. Virol. 159, 207–216 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Lentz, T.L., Burrage, T.G., Smith, A.L., Crick, J., Tignor, G.H.: Is the acetylcholine receptor a rabies virus receptor? Science. 215, 182–184 (1982)

    Article  CAS  PubMed  Google Scholar 

  18. Gastka, M., Horvath, J., Lentz, T.L.: Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay. J. Gen. Virol. 77(Pt 10), 2437–2440 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Tuffereau, C., Benejean, J., Blondel, D., Kieffer, B., Flamand, A.: Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J. 17, 7250–7259 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thoulouze, M.I., et al.: The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 72, 7181–7190 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J., et al.: Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathog. 14, e1007189 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gaudin, Y.: Rabies virus-induced membrane fusion pathway. J. Cell Biol. 150, 601–612 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Durrer, P., Gaudin, Y., Ruigrok, R.W., Graf, R., Brunner, J.: Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 270, 17575–17581 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. Benmansour, A., et al.: Antigenicity of rabies virus glycoprotein. J. Virol. 65, 4198–4203 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bunschoten, H., et al.: Characterization of a new virus-neutralizing epitope that denotes a sequential determinant on the rabies virus glycoprotein. J. Gen. Virol. 70(Pt 2), 291–298 (1989)

    Article  CAS  PubMed  Google Scholar 

  26. Dietzschold, B., et al.: Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc. Natl. Acad. Sci. U. S. A. 80, 70–74 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuzmina, N.A., Kuzmin, I.V., Ellison, J.A., Rupprecht, C.E.: Conservation of binding epitopes for monoclonal antibodies on the rabies virus glycoprotein. J. Antivir. Antiretrovir. 5, 037–043 (2013)

    Article  CAS  Google Scholar 

  28. Luo, T.R., et al.: A virus-neutralizing epitope on the glycoprotein of rabies virus that contains Trp251 is a linear epitope. Virus Res. 51, 35–41 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Seif, I., Coulon, P., Rollin, P.E., Flamand, A.: Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J. Virol. 53, 926–934 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsumoto, T., et al.: Isolation and characterization of novel human monoclonal antibodies possessing neutralizing ability against rabies virus. Microbiol. Immunol. 54, 673–683 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. Lafon, M., Wiktor, T.J., Macfarlan, R.I.: Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J. Gen. Virol. 64(Pt 4), 843–851 (1983)

    Article  PubMed  Google Scholar 

  32. Muller, T., et al.: Development of a mouse monoclonal antibody cocktail for post-exposure rabies prophylaxis in humans. PLoS Negl. Trop. Dis. 3, e542 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao, G.F.: From “a”IV to “Z”IKV: attacks from emerging and re-emerging pathogens. Cell. 172, 1157–1159 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mumford, J.A.: Vaccines and viral antigenic diversity. Rev. Sci. Tech. 26, 69–90 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. Smith, D.J., et al.: Mapping the antigenic and genetic evolution of influenza virus. Science. 305, 371–376 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Hanada, K., Suzuki, Y., Gojobori, T.: A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 21, 1074–1080 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. Bourhy, H., et al.: The origin and phylogeography of dog rabies virus. J. Gen. Virol. 89, 2673–2681 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. Troupin, C., et al.: Large-scale phylogenomic analysis reveals the complex evolutionary history of rabies virus in multiple carnivore hosts. PLoS Pathog. 12, e1006041 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ajorloo, M., et al.: Evaluation and phylogenetic analysis of regular rabies virus vaccine strains. Arch. Iran. Med. 21, 101–110 (2018)

    PubMed  Google Scholar 

  40. Patel, A.C., et al.: Molecular and immunogenic characterization of BHK-21 cell line adapted CVS-11 strain of rabies virus and future prospect in vaccination strategy. Virus. 26, 288–296 (2015)

    Article  Google Scholar 

  41. Orlowska, A., Zmudzinski, J.F.: Molecular epidemiology of rabies virus in Poland. Arch. Virol. 159, 2043–2050 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aghomo, H.O., Rupprecht, C.E.: Antigenic characterisation of virus isolates from vaccinated dogs dying of rabies. Trop. Anim. Health Prod. 22, 275–280 (1990)

    Article  CAS  PubMed  Google Scholar 

  43. Umoh, J.U., Cox, J.H., Schneider, L.G.: Antigenic characterization of street rabies virus isolates from Nigeria using monoclonal antibodies. Zentralbl. Veterinarmed. B. 37, 222–228 (1990)

    CAS  PubMed  Google Scholar 

  44. Okoh, A.E.: Antigenic characterization of rabies virus isolates from vaccinated dogs in plateau state, Nigeria. Vet. Res. Commun. 24, 203–211 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. Zanluca, C., et al.: Novel monoclonal antibodies that bind to wild and fixed rabies virus strains. J. Virol. Methods. 175, 66–73 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. Wiktor, T.J., Koprowski, H.: Antigenic variants of rabies virus. J. Exp. Med. 152, 99–112 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sureau, P., Rollin, P., Wiktor, T.J.: Epidemiologic analysis of antigenic variations of street rabies virus: detection by monoclonal antibodies. Am. J. Epidemiol. 117, 605–609 (1983)

    Article  CAS  PubMed  Google Scholar 

  48. Bakker, A.B., et al.: Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J. Virol. 79, 9062–9068 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marissen, W.E., et al.: Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis. J. Virol. 79, 4672–4678 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nie, J., et al.: Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system. Sci. Rep. 7, 42769 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, W., et al.: Antigenic variations of recent street rabies virus. Emerg. Microbes Infect. 8, 1584–1592 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wright, E., et al.: A robust lentiviral pseudotype neutralisation assay for in-field serosurveillance of rabies and lyssaviruses in Africa. Vaccine. 27, 7178–7186 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wright, E., et al.: Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J. Gen. Virol. 89, 2204–2213 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wright, E., et al.: Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses. Virology. 408, 183–189 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. De Benedictis, P., et al.: Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol. Med. 8, 407–421 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boruah, B.M., et al.: Single domain antibody multimers confer protection against rabies infection. PLoS One. 8, e71383 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, J., et al.: Clofazimine: a promising inhibitor of rabies virus. Front. Pharmacol. 12, 598241 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Federici, T., et al.: Comparative analysis of HIV-1-based lentiviral vectors bearing lyssavirus glycoproteins for neuronal gene transfer. Genet. Vaccines Ther. 7, 1 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  59. Watson, D.J., Kobinger, G.P., Passini, M.A., Wilson, J.M., Wolfe, J.H.: Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol. Ther. 5, 528–537 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. Meza, D.K., et al.: Predicting the presence and titre of rabies virus-neutralizing antibodies from low-volume serum samples in low-containment facilities. Transbound. Emerg. Dis. 68, 1564–1576 (2021)

    Article  CAS  PubMed  Google Scholar 

  61. Cai, M., et al.: Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerg. Microbes Infect. 11, 1474–1487 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moeschler, S., Locher, S., Conzelmann, K.K., Kramer, B., Zimmer, G.: Quantification of lyssavirus-neutralizing antibodies using vesicular stomatitis virus Pseudotype particles. Viruses. 8, 254 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weir, D.L., Smith, I.L., Bossart, K.N., Wang, L.F., Broder, C.C.: Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins. Virology. 444, 21–30 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. Li, Q., Liu, Q., Huang, W., Li, X., Wang, Y.: Current status on the development of pseudoviruses for enveloped viruses. Rev. Med. Virol. 28, e1963 (2018)

    Article  PubMed  Google Scholar 

  65. Nie, J., Liu, Y., Huang, W., Wang, Y.: Development of a triple-color Pseudovirion-based assay to detect neutralizing antibodies against human papillomavirus. Viruses. 8, 107 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sakuma, T., et al.: Characterization of retroviral and lentiviral vectors pseudotyped with xenotropic murine leukemia virus-related virus envelope glycoprotein. Hum. Gene Ther. 21, 1665–1673 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, Q., et al.: An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine. 35, 5172–5178 (2017)

    Article  CAS  PubMed  Google Scholar 

  68. Nie, J., et al.: Nipah pseudovirus system enables evaluation of vaccines in vitro and in vivo using non-BSL-4 facilities. Emerg. Microbes Infect. 8, 272–281 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ning, T., et al.: Antigenic drift of influenza a(H7N9) virus hemagglutinin. J. Infect. Dis. 219, 19–25 (2019)

    Article  CAS  PubMed  Google Scholar 

  70. Wu, J., Zhao, C., Liu, Q., Huang, W., Wang, Y.: Development and application of a bioluminescent imaging mouse model for Chikungunya virus based on pseudovirus system. Vaccine. 35, 6387–6394 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Carpentier, D.C., et al.: Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein. Gene Ther. 19, 761–774 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Khalil, W.M., Aboshanab, K.M., Aboulwafa, M.M.: Evaluation and correlation of rabies vaccine potency using the National Institute of health, rapid focus fluorescent inhibition, and passive hemagglutination tests. Viral Immunol. 35, 159–169 (2022)

    Article  CAS  PubMed  Google Scholar 

  73. De Benedictis, P., Mancin, M., Cattoli, G., Capua, I., Terrregino, C.: Serological methods used for rabies post vaccination surveys: an analysis. Vaccine. 30, 5611–5615 (2012)

    Article  PubMed  Google Scholar 

  74. Liu, Y., Zhang, S., Zhang, F., Hu, R.: A semi-quantitative serological method to assess the potency of inactivated rabies vaccine for veterinary use. Virol. Sin. 27, 259–264 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bentley, E.M., Mather, S.T., Temperton, N.J.: The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination. Vaccine. 33, 2955–2962 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Evans, J.S., et al.: Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J. Gen. Virol. 99, 169–180 (2018)

    Article  CAS  PubMed  Google Scholar 

  77. Gogtay, N., et al.: Safety and pharmacokinetics of a human monoclonal antibody to rabies virus: a randomized, dose-escalation phase 1 study in adults. Vaccine. 30, 7315–7320 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. Sloan, S.E., et al.: Identification and characterization of a human monoclonal antibody that potently neutralizes a broad panel of rabies virus isolates. Vaccine. 25, 2800–2810 (2007)

    Article  CAS  PubMed  Google Scholar 

  79. Chao, T.Y., et al.: SYN023, a novel humanized monoclonal antibody cocktail, for post-exposure prophylaxis of rabies. PLoS Negl. Trop. Dis. 11, e0006133 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  80. Franka, R., et al.: In vivo efficacy of a cocktail of human monoclonal antibodies (CL184) against diverse North American bat rabies virus variants. Trop. Med. Infect. Dis. 2, 48 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  81. de Melo, G.D., et al.: A combination of two human monoclonal antibodies cures symptomatic rabies. EMBO Mol. Med. 12, e12628 (2020)

    PubMed  PubMed Central  Google Scholar 

  82. Dietzschold, B., et al.: Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J. Virol. 56, 12–18 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lodmell, D.L., et al.: DNA immunization protects nonhuman primates against rabies virus. Nat. Med. 4, 949–952 (1998)

    Article  CAS  PubMed  Google Scholar 

  84. Prehaud, C., Takehara, K., Flamand, A., Bishop, D.H.: Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology. 173, 390–399 (1989)

    Article  CAS  PubMed  Google Scholar 

  85. Morimoto, K., Hooper, D.C., Spitsin, S., Koprowski, H., Dietzschold, B.: Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J. Virol. 73, 510–518 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonhomme, C.J., Knopp, K.A., Bederka, L.H., Angelini, M.M., Buchmeier, M.J.: LCMV glycosylation modulates viral fitness and cell tropism. PLoS One. 8, e53273 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ge, P., Ross, T.M.: Evolution of a(H1N1) pdm09 influenza virus masking by glycosylation. Expert Rev. Vaccines. 20, 519–526 (2021)

    Article  CAS  PubMed  Google Scholar 

  88. Kim, P., et al.: Glycosylation of hemagglutinin and neuraminidase of influenza a virus as signature for ecological Spillover and adaptation among influenza reservoirs. Viruses. 10, 183 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yen, P.J., et al.: Loss of a conserved N-linked glycosylation site in the simian immunodeficiency virus envelope glycoprotein V2 region enhances macrophage tropism by increasing CD4-independent cell-to-cell transmission. J. Virol. 88, 5014–5028 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang, W., et al.: A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology. 10, 14 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, W., et al.: N463 glycosylation site on V5 loop of a mutant gp120 regulates the sensitivity of HIV-1 to neutralizing monoclonal antibodies VRC01/03. J. Acquir. Immune Defic. Syndr. 69, 270–277 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Du Pont, V., et al.: Identification and characterization of a small-molecule rabies virus entry inhibitor. J. Virol. 94 (2020)

    Google Scholar 

  93. Mues, M.B., Cheshenko, N., Wilson, D.W., Gunther-Cummins, L., Herold, B.C.: Dynasore disrupts trafficking of herpes simplex virus proteins. J. Virol. 89, 6673–6684 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weir, D.L., Laing, E.D., Smith, I.L., Wang, L.F., Broder, C.C.: Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5. Virol. J. 11, 40 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Wang or Youchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Long, C., Wang, L., Wang, Y. (2023). Pseudotyped Viruses for Lyssavirus. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_10

Download citation

Publish with us

Policies and ethics