Skip to main content

Bamboo Biomass: A Strategy for Climate Change Mitigation and Adaptation, and Forest Landscape Restoration (FLR) in Cameroon

  • Chapter
  • First Online:
Bamboo Science and Technology

Abstract

Studies suggest that bamboo is an excellent biological resource with the capacity to sequester and stock carbon while providing direct and indirect services that support human well-being. Cameroon, despite having a huge bamboo potential, has not benefited from these offers with respect to Forest Landscape Restoration (FLR) and climate combat. This chapter aimed at estimating carbon stocks of Oxytenanthera abyssinica (A. Rich.) Munro in the High Guinea Savannah of Cameroon; compared with carbon stocks of different dominant bamboo species in different forest strata in Cameroon; assessed the place of bamboo for possible use for FLR, and valued bamboo carbon monetarily. Data were destructively collected for carbon assessment. 14 circular plots of 100 m2 were set up. 5% of bamboo of different age classes were harvested for biomass, separated into components, weighed, and subsampled oven-dried for dry mass. The results showed that O. abyssinica means culm density and above-ground carbons were about 10,343 ± 4910 ha−1 and 27.45 ± 17.22 tC.ha−1, respectively. Literature showed that total bamboo carbon in Cameroon ranges from 16.41 to 157.93 tC.ha−1. High carbon was found with Bambusa vulgaris and Phyllostachys aurea. The total bamboo carbon stocks were less than those of forest strata, but similar to those of agroforestry and plantations and greater than that for woody savannah, grasslands, shrublands, and pastures. The total carbon of bamboo in Cameroon was estimated at 82.47 tC.ha−1 and corresponded to a monetary value of 272 $ USD.ha−1. Policymakers can consider this and integrate bamboo into sustainable strategies to restore degraded lands in Cameroon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad M, Kamke FA (2003) Analysis of Calcutta bamboo for structural composite materials: surface characteristics. Wood Sci Technol 37(3):233–240

    CAS  Google Scholar 

  2. Amoah M, Assan F, Dadzie PK (2020) Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica and Bambusa vulgaris var. vitata plantations in the Bobiri forest reserve of Ghana. J Sustain For 39(2):113–136

    Google Scholar 

  3. Banik RL (2000) Silviculture and field guide to priority bamboos of Bangladesh and South Asia

    Google Scholar 

  4. Buckingham KC, Wu L, Lou Y (2014) Can’t see the (bamboo) forest for the trees: examining bamboo’s fit within international forestry institutions. Ambio 43(6):770–778

    CAS  Google Scholar 

  5. Busch J, Engelmann J (2017) Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050. Environ Res Lett 13:015001. https://doi.org/10.1088/1748-9326/aa907c

    CAS  Google Scholar 

  6. Bystriakova N, Kapos V, Lysenko I (2004) Bamboo diversity. UNEP-WCMC/INBAR

    Google Scholar 

  7. Canavan S, Richardson DM (2015) Understanding the risks of an emerging global market for cultivating bamboo: considerations for a more responsible dissemination of alien bamboos

    Google Scholar 

  8. Cannon J (2018) Carbon pricing could save millions of hectares of tropical forest: new study. MONGABAY News & inspiration from Nature’s frontine. https://news.mongabay.com/2018/02/carbon-pricing-could-save-millions-of-hectares-of-tropical-forest-new-study/ Accessed 24 Dec 2020

  9. Catpo Chuchón JE, Cárdenas RP, Durai J, Trinh TL, Li Y (2021) Ecosystem services and cost-benefit analysis of natural forests and mixed Bamboo systems in Peru

    Google Scholar 

  10. Chauhan OP, Unni LE, Kallepalli C, Pakalapati SR, Batra HV (2016) Bamboo shoots: composition, nutritional value, therapeutic role and product development for value addition. Int J Food Ferment Technol 6(1):1

    Google Scholar 

  11. Chen S, Jiang H, Cai Z, Zhou X, Peng C (2018) The response of the net primary production of Moso bamboo forest to the On and Off-year management: a case study in Anji County, Zhejiang, China. For Ecol Manage 409:1–7

    Google Scholar 

  12. Chimi DC, Nfornkah BN, Gadinga WF, Awazi NP, Kaam R, Nguefack AJ, Tatang M, Atoupka AM, Zambou GJC, Tabue MRB, Inimbock SL, Zapfack L (2021) Indigenous knowledge of Bamboo products and uses in the Western Highlands of Cameroon. Asian J Res Agric For 7(2):22–30. https://doi.org/10.9734/AJRAF/2021/v7i230125

    Google Scholar 

  13. Dev I, Ram A, Ahlawat SP, Palsaniya DR, Singh R, Dhyani SK, Kumar N, Tewari RK, Singh M, Babanna SK, Newaj R (2020) Bamboo-based agroforestry system (Dendrocalamus strictus+ sesame–chickpea) for enhancing productivity in semi-arid tropics of central India. Agrofor Syst 94(5):1725–1739

    Google Scholar 

  14. Devi AS, Singh KS (2021) Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci Rep 11(1):1–8

    Google Scholar 

  15. Devi AS, Singh KS, Lalramnghinglova H (2018) Aboveground biomass production of Melocanna baccifera and Bambusa tulda in a sub-tropical bamboo forest in Lengpui, North-East India. Int Res J Environ Sci 7:23–28

    Google Scholar 

  16. Donfack P (2020) The use of Bamboo for landscape restoration in Central and West Africa: assessment of barriers and key recommendations

    Google Scholar 

  17. Durai J, Long TT (2019) Manual for sustainable management of clumping bamboo forest (No. 41). INBAR Technical Report

    Google Scholar 

  18. Dwivedi AK, Kumar A, Baredar P, Prakash O (2019) Bamboo as a complementary crop to address climate change and livelihoods–Insights from India. Forest Policy Econ 102:66–74

    Google Scholar 

  19. Ecosystems Marketplace (2016) State of the voluntary carbon market. In: Forest trends’ ecosystem marketplace 1203 19th Street, NW 4th floor Washington, DC 20036

    Google Scholar 

  20. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (2006) 2006 IPCC guidelines for national greenhouse gas inventories

    Google Scholar 

  21. Emamverdian A, Ding Y, Ranaei F, Ahmad Z (2020) Application of bamboo plants in nine aspects. Sci World J

    Google Scholar 

  22. FAO (2012) Guidelines on destructive measurement for forest biomass estimation. FAO, Rome

    Google Scholar 

  23. Food and Agriculture Organisation of the United Nations (2020) Global forest resources assessment 2020: main report. FAO, Rome. https://doi.org/10.4324/9781315184487-1

  24. Gurmessa F, Gemechu T, Soromessa T, Kelbessa E (2016) Allometric equations to estimate the biomass of Oxytenanthera Abyssinica (A. Rich.) Munro. (Ethiopian Lowland Bamboo) in Dicho Forest, Oromia Region, Western Ethiopia. Int J Res Stud Biosci 4(12):33–48

    Google Scholar 

  25. Huy B, Long TT (2019) A manual for bamboo forest biomass and carbon assessment. International Bamboo and Rattan Organization, Beijing, China

    Google Scholar 

  26. INBAR (2022) Bamboo & Rattan update AFRICA: REFLECTIONS ON 25 YEARS: sharing the latest news and activities from the bamboo and rattan sector. https://www.inbar.int/wp-ntent/uploads/2022/04/BRU_V3I1_INBAR_Reflections-Africa-25-Years.pdf Accessed 19 Sep 2022

  27. INBAR (2015) Bamboo: a strategic resource for countries to reduce the effects of climate change. Policy synthesis report. INBAR, Beijing, China

    Google Scholar 

  28. Ingram V, Tieguhong JC, Nkamgnia EM, Eyebe JP, Ngawe M (2010) Bamboo production to consumption system, in Cameroon. CIFOR, Bogor

    Google Scholar 

  29. IPCC (2006) Guidelines for national greenhouse gas inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Hayama, Kanagawa, Japan

    Google Scholar 

  30. Kabelong L-P-RB, Louis Z, Robert BW, Cedric CD, Melanie CN, Julliete MN, Nadege MT, Roger BTM (2020) Biodiversity and carbon sequestration potential in two types of tropical rainforest, Cameroon. Acta Oecol 105:103562

    Google Scholar 

  31. Kabelong LPRB, Louis Z, Robert BW, Cedric CD, Chichi MN, Yannick EB, Damien ME, Julliete MN, Nadège MT, Charles IMA, Kenneth RMS, Farikou MS, Florence JSP, Tonga KP, Remi J, Thierry LK, Ulrich ACKJ, Boris AAYA, Roger BTM (2020) Floristic diversity and carbon stocks in the periphery of Deng–Deng National Park, Eastern Cameroon. J For Res https://doi.org/10.1007/s11676-018-0839-7

  32. Kaushal R, Kumar A, Jayaraman D, Mandal D, Rao IVR, Dogra P, Alam NM, Gupta A, Tomar JMS, Singh DV, Mehta H, Mishra PK (2018) Research methodologies for field monitoring, analysis and evaluation of resource conservation aspects of bamboos. INBAR 9(4):124

    Google Scholar 

  33. King C, van der Lugt P, Long TT, Yanxia L (2021) Integration of Bamboo forestry into carbon markets. Policy Brief, INBAR. https://www.inbar.int/wpcontent/uploads/2021/03/Mar-2021_Integration-of-Bamboo-Forestry-into-Carbon-Markets-2.pdf Accessed 2 Aug 2021

  34. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Google Scholar 

  35. Letouzey R (1985) Notice de la carte phytogeographique du Cameroun au 1: 500,000

    Google Scholar 

  36. Lobovikov M, Paudel S, Ball L, Piazza M, Guardia M, Wu J, Ren H (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005 (No. 18). Food & Agriculture Org

    Google Scholar 

  37. Lobovikov M, Schoene D, Yping L (2012) Bamboo in climate change and rural livelihoods. Mitig Adapt Strat Glob Change 17(3):261–276

    Google Scholar 

  38. Lounang TFC, Chimi DC, Tajuekem VC, Djibrillia P, Happi YJ (2018) Diversity, structure and carbon stocks from three pools in the Kouoghap sacred forest, Hedgerows and Eucalyptus plantations in the Batoufam locality (West Cameroon). Appl Ecol Environ Sci 6(4):160–169

    Google Scholar 

  39. Madountsap TN, Zapfack L, Chimi DC, Kabelong BL-P, Forbi PF, Tsopmejio TI, Tajeukem VC, Ntonmen YAF, Tabue MRB, Nasang JM (2019) Carbon storage potential of cacao agroforestry systems of different age and management intensity. Climate Dev 11(7):543–554. https://doi.org/10.1080/17565529.2018.1456895

    Google Scholar 

  40. Mao F, Du H, Li X, Ge H, Cui L, Zhou G (2020) Spatiotemporal dynamics of bamboo forest net primary productivity with climate variations in Southeast China. Ecol Ind 116:106505

    Google Scholar 

  41. Maria SV, Lynn GC, Dransfield J, Govaerts R, Baker WJ (2016) World Checklist of Bamboo and Rattans (No. 37, p. 454). INBAR Technical Report

    Google Scholar 

  42. Mariyono J, Kuntariningsih A, Suswati E, Kompas T (2018) Quantity and monetary value of agrochemical pollution from intensive farming in Indonesia. Manag Environ Qual Int J

    Google Scholar 

  43. Mathew I, Shimelis H, Mutema M, Chaplot V (2017) What crop type for atmospheric carbon sequestration: REsults from a global data analysis. Agr Ecosyst Environ 243:34–46

    CAS  Google Scholar 

  44. MINEPDED (2021) Cameroon sub-national FLR–restoration opportunity assessment. https://www.inbar.int/wp-content/uploads/2022/07/2021_ROAM-Assessemnet-Report.pdf

  45. Mishra G, Giri K, Panday S, Kumar R, Bisht NS (2014) Bamboo: potential resource for eco-restoration of degraded lands. J Biol Earth Sci 4(2):B130–B136

    Google Scholar 

  46. Moreno AJ, Perdomo CA, Avilés O (2018) Study of climate change in Bogota, using Colombia and global temperature data. Int J Appl Eng Res 1(13):11225–11230

    Google Scholar 

  47. Nath AJ, Lal R, Das AK (2015) Managing woody bamboos for carbon farming and carbon trading. Glob Ecol Conserv 3:654–663

    Google Scholar 

  48. Nath AJ, Sileshi GW, Das AK (2018) Bamboo based family forests offer opportunities for biomass production and carbon farming in North East India. Land Use Policy 75:191–200

    Google Scholar 

  49. Nath AJ, Sileshi GW, Das AK (2020) Bamboo: climate change adaptation and mitigation. CRC Press

    Google Scholar 

  50. Nath JA, Lal R, Das AK (2015) Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system. Sci Total Environ 521:372–379

    Google Scholar 

  51. Nfornkah BN, Kaam R, Martin T, Louis Z, Cedric CD, Forje GW, Armand Delanot T, Mélanie Rosine T, Jean Baurel A, Loic T, Guy Herman ZT (2021a) Culm allometry and carbon storage capacity of Bambusa vulgaris Schrad. ex JC WendL. in the tropical evergreen rain forest of Cameroon. J Sustain For 40(6):622–638

    Google Scholar 

  52. Nfornkah BN, Kaam R, Tchamba M, Zapfack L, Chimi C, Tanougong A (2020a) Assessing the spatial distribution of bamboo species using remote sensing in Cameroon. J Ecol Nat Environ 12(4):172–183

    Google Scholar 

  53. Nfornkah BN, Kaam R, Zapfack L, Tchamba M, Chimi DC (2020b) Bamboo diversity and carbon stocks of dominant species in different agro-ecological zones in Cameroon. Afr J Environ Sci Technol 14(10):290–300

    Google Scholar 

  54. Nfornkah BN, Kaam R, Zapfack L, Tchamba M, Djomo CC, Forje WG, Nkondjoua Dolanot AT, Tsewoue MR, Arnold JN, Zambou JCG, Okala S (2021b) Spatial distribution and carbon storage of a native bamboo species in the high Guinea savannah of Cameroon: Oxytenanthera abyssinica (A. Rich.) Munro. Int J Environ Stud 78(3):504–516

    Google Scholar 

  55. Ngomeni AF, Bidzanga ELN, Avana ML, Tchamba MN, Chimi CD (2021) Potentiel de séquestration du carbone des agroforêts à base de caféier robusta (Coffea canephora var. robusta) dans les bassins de production du Cameroun. Int J Biol Chem Sci 15(6):2652–2664

    Google Scholar 

  56. Ngueguim JR, Betti JL, Dicka KE, Momo SMC, Temgoua LF (2017) Deforestation, biodiversity and biomass losses in kribi deep sea port area (Cameroon): some mitigating measures. J Ecol Nat Environ 9(6):87–98

    Google Scholar 

  57. Nguekeng PBC, Jiofack RB, Temgoua L, Mbouwe IF, Tchanou AV, Tchoundjeu Z (2018) Plant diversity, ecological services, and carbon stock assessment in cocoa agroforestry plantations of forest and savannah transitions in Cameroon. For Biomass Carbon 45

    Google Scholar 

  58. Noumi NV, Zapfack L, Hamadou MR, Awe Djongmo V, Witanou N, Nyeck B, Ngossomo JD, Tabue Mbobda RB, Mapongmetsem PM (2018) Floristic diversity, carbon storage and ecological services of eucalyptus agrosystems in Cameroon. Agrofor Syst 92(2):239–250

    Google Scholar 

  59. Noumi VN, Djongmo VA, Nyeck B, Mbobda RBT, Zapfack L (2018) Vegetation structure, carbon sequestration potential and species conservation in four agroforestry systems in Cameroon (Tropical Africa). Acta Botanica Brasilica 32:212–221

    Google Scholar 

  60. Osei R, Ansong M, Zerbe S (2019) Comparison of socio-economic and ecological benefits of bamboo and trees: the perspectives of local communities in south-western Ghana. Southern For J For Sci 81(3):255–260

    Google Scholar 

  61. Paris Agreement (2015) https://unfccc.int/sites/default/files/english_paris_agreement.pdf Accessed 19 Sep 2022

  62. Programme Nationale de développement participatif (PNDP) (2015) Plan Communal de Developpement (PCD) de La Commune de Bankim. p 356

    Google Scholar 

  63. Programme Nationale de développement participatif (PNDP) (2019) Plan Communal de Développement (PCD) de Dir. Commune de Dir. p 379

    Google Scholar 

  64. Paudyal K, Yanxia L, Long TT, Adhikari S, Lama S, Bhatta KP (2022) Ecosystem services from bamboo forests: key findings, lessons learnt and call for actions from global synthesis. INBAR Working Paper

    Google Scholar 

  65. Rebelo C, Buckingham K (2015) Bamboo: the opportunities for forest and landscape restoration. Unasylva 66(245):91

    Google Scholar 

  66. Ruth MV, Marie-Louise A, Neba NB, Rene K (2022) Status of bamboo species (Poaceae)(Kunth) in Menoua, agroecological zone 3 of Cameroon. Int J Biodiv Conserv 14(3):115–127

    Google Scholar 

  67. Sharma R, Wahono J, Baral H (2018) Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10(12):4367

    Google Scholar 

  68. Shimono K, Katayama A, Kume T, Enoki T, Chiwa M, Hishi T (2022) Differences in net primary production allocation and nitrogen use efficiency between Moso bamboo and Japanese cedar forests along a slope. J For Res 27(1):28–35

    CAS  Google Scholar 

  69. Sileshi GW, Nath AJ (2017) Carbon farming with bamboos in Africa: a call for action. Working Paper

    Google Scholar 

  70. Singnar P, Das MC, Sileshi GW, Brahma B, Nath AJ, Das AK (2017) Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera. For Ecol Manage 395:81–91

    Google Scholar 

  71. Smith P, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH (2014) Agriculture, forestry and other land use (AFOLU)

    Google Scholar 

  72. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: synthesis report. Contribution of working group I, II and III to the fourth assessment report of the intergovernmental panel on climate change. summary for policymakers

    Google Scholar 

  73. Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19(NA):418–28

    Google Scholar 

  74. Song QN, Lu H, Liu J, Yang J, Yang GY, Yang QP (2017) Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci Rep 7(1):1–10

    Google Scholar 

  75. Tchobsala MC, Dongock ND, Nyasiri J, Ibrahima A (2016) Carbon storage of anthropoid’s vegetation on the Ngaoundéré escarpment (Adamawa, Cameroon). J Adv Biol 9(2):2347–6893

    Google Scholar 

  76. Temgoua LF, Dongmo W, Nguimdo V, Nguena C (2018) Diversité Ligneuse et Stock de Carbone des Systèmes Agroforestiers à base de Cacaoyers à l’Est Cameroun: Cas de la Forêt d’Enseignement et de Recherche de l’Université de Dschang. J Appl Biosci 122:12274–12286

    Google Scholar 

  77. Temgoua LF, Etchike ABD, Solefack MCM, Tumenta P, Nkwelle J (2020) Woody species diversity conservation and carbon sequestration potential of coffee agroforestry systems in the Western Region of Cameroon. J Horticult For 12(2):35–48

    Google Scholar 

  78. Temgoua LF, Momo Solefack MC, Nguimdo Voufo V, Tagne Belibi C, Tanougong A (2018) Spatial and temporal dynamic of land-cover/land-use and carbon stocks in Eastern Cameroon: a case study of the teaching and research forest of the University of Dschang. For Sci Technol 14(4):181–191

    Google Scholar 

  79. Terefe R, Jian L, Kunyong Y (2019) Role of bamboo forest for mitigation and adaptation to climate change challenges in China. Reproduction 2(3):4

    Google Scholar 

  80. Van der Lugt P, ThangLong T, King C (2018) Carbon sequestration and carbon emissions reduction through bamboo forests and products. INBAR Working Paper. INBAR, Beijing, China

    Google Scholar 

  81. Wang Y, Chen J, Wang D, Ye F, He Y, Hu Z, Zhao G (2020) A systematic review on the composition, storage, processing of bamboo shoots: focusing the nutritional and functional benefits. J Funct Foods 71:104015

    CAS  Google Scholar 

  82. Xu Q, Jiang P, Xu Z (2008) Soil microbial functional diversity under intensively managed bamboo plantations in southern China. J Soils Sediments 8(3):177–183

    CAS  Google Scholar 

  83. Xu QF, Jiang PK, Wu JS, Zhou GM, Shen RF, Fuhrmann JJ (2015) Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biol Invasions 17(1):433–444

    Google Scholar 

  84. Yuen JQ, Fung T, Ziegler AD (2017) Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For Ecol Manage 393:113–138

    Google Scholar 

Download references

Acknowledgements

We thank the International Bamboo and Rattan Organisation (INBAR) for funding the data collection. We appreciate the efforts of the laboratory of Environmental Geomatics, Forestry Department of the University of Dschang and IRAD Yokadouma, whose members participated in the data collection process. We thank the laboratory of Rural Engineering of the University of Dschang where samples were oven-dried. We appreciate the Chief and the population of Ndoumdjom and Ndem-ndem for providing support during data collection. We thank the independent reviewers for sacrificing their precious time to appreciate the quality of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnabas Neba Nfornkah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaam, R., Nfornkah, B.N., Chimi, C.D., Nguefack, J.A., Tchamba, M., Zapfack, L. (2023). Bamboo Biomass: A Strategy for Climate Change Mitigation and Adaptation, and Forest Landscape Restoration (FLR) in Cameroon. In: Palombini, F.L., Nogueira, F.M. (eds) Bamboo Science and Technology. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-99-0015-2_14

Download citation

Publish with us

Policies and ethics