Skip to main content

Deepfake Detection Performance Evaluation and Enhancement Through Parameter Optimization

  • Conference paper
  • First Online:
Applied Intelligence (ICAI 2023)

Abstract

Deepfake technology has become a subject of concern due to its potential for spreading misinformation and facilitating deceptive activities. To address these issues, various deepfake detection approaches have been developed with similar training paradigms. Then a natural question is which parameters are critical to achieving better detection performance. This study aims to evaluate and optimize the performance of existing deepfake detection systems by analyzing key parameters in the training paradigm. Specifically, we systematically analyze four crucial factors: image cropping, sampling rate, data augmentation, and transfer learning. The impact of different image scopes, such as utilizing the entire image or only the cropped face region, is investigated. We also explore how varying the sampling rate and employing data augmentation techniques can enhance the diversity of the training dataset. Additionally, transfer learning with pre-trained models is leveraged to improve detection accuracy. Through comprehensive experiments and evaluations of several popular and state-of-the-art detection methods, optimal configurations within each factor are identified, providing valuable insights to enhance the efficiency and effectiveness of deepfake detection systems. Given the widespread use and potential negative consequences of deepfake technology, reliable detection systems are crucial in combatting the harmful effects of manipulated media.

This research is supported by the National Key Research and Development Program of China (2020AAA0107702), the National Natural Science Foundation of China (62006181, 62161160337, 62132011, U21B2018, U20A20177, 62206217), the Shaanxi Province Key Industry Innovation Program (2023-ZDLGY-38, 2021ZDLGY01-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: CVPR Workshops, pp. 38–45 (2019)

    Google Scholar 

  2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G.W., Silver, D.L. (eds.) Unsupervised and Transfer Learning - Workshop held at ICML 2011, Bellevue, Washington, USA, July 2, 2011. JMLR Proceedings, vol. 27, pp. 37–50. JMLR.org (2012). http://proceedings.mlr.press/v27/baldi12a.html

  3. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.: Openface 2.0: Facial behavior analysis toolkit. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, Xi’an, China, May 15–19, 2018, pp. 59–66. IEEE Computer Society (2018). https://doi.org/10.1109/FG.2018.00019

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  5. Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer, C.C.: The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397 (2020)

  6. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  10. Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine, S., Dinh, L., Kingma, D.: Videoflow: a flow-based generative model for video. arXiv preprint arXiv:1903.01434 2(5), 3 (2019)

  11. Masood, M., Nawaz, M., Malik, K.M., Javed, A., Irtaza, A., Malik, H.: Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures, and way forward. Applied Intelligence, pp. 1–53 (2022)

    Google Scholar 

  12. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 83–92. IEEE (2019)

    Google Scholar 

  13. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: Using capsule networks to detect forged images and videos. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United Kingdom, May 12–17, 2019, pp. 2307–2311. IEEE (2019). https://doi.org/10.1109/ICASSP.2019.8682602

  14. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 1–11. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00009

  15. Shiohara, K., Yamasaki, T.: Detecting deepfakes with self-blended images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18720–18729 (2022)

    Google Scholar 

  16. Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-domain Operations Applications, vol. 11006, pp. 369–386. SPIE (2019)

    Google Scholar 

  17. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  18. Tariq, S., Abuadbba, A., Moore, K.: Deepfake in the metaverse: security implications for virtual gaming, meetings, and offices. arXiv preprint arXiv:2303.14612 (2023)

  19. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deepfakes and beyond: a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020)

    Article  Google Scholar 

  20. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer lookat spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  21. Wang, R., Juefei-Xu, F., Ma, L., Xie, X., Huang, Y., Wang, J., Liu, Y.: Fakespotter: a simple yet robust baseline for spotting ai-synthesized fake faces. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 3444–3451. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/476

  22. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)

    Article  Google Scholar 

  23. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  24. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8261–8265. IEEE (2019)

    Google Scholar 

  25. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  27. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  28. Zoss, G., Chandran, P., Sifakis, E., Gross, M., Gotardo, P., Bradley, D.: Production-ready face re-aging for visual effects. ACM Trans. Graph. (TOG) 41(6), 1–12 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhao Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pei, B., Deng, J., Lin, C., Hu, P., Shen, C. (2024). Deepfake Detection Performance Evaluation and Enhancement Through Parameter Optimization. In: Huang, DS., Premaratne, P., Yuan, C. (eds) Applied Intelligence. ICAI 2023. Communications in Computer and Information Science, vol 2015. Springer, Singapore. https://doi.org/10.1007/978-981-97-0827-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0827-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0826-0

  • Online ISBN: 978-981-97-0827-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics