Skip to main content

Musical Training Changes the Intra- and Inter-network Functional Connectivity

  • Conference paper
  • First Online:
Music Intelligence (SOMI 2023)

Abstract

Previous studies have evidenced that musical training can change the brain functional and structural organizations, but it is still unclear how interactions within and between functional networks are affected by musical training. Using the resting-state fMRI dataset with a relatively large sample, the present study examined the effects of musical training on inter- and intra-network functional connectivity (FC). The results revealed the decreased inter- and intra-network FC extensively which reflect greater movement efficiency and automaticity as well as five pairs of increased inter-network FC that possibly refer to cognitive function in participants with musical training compared to their counterparts without musical training. The current study provided a new perspective that musical training can induce the brain network changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Souza, A.A., Moradzadeh, L., Wiseheart, M.: Musical training, bilingualism, and executive function: working memory and inhibitory control. Cogn. Res. Princ. Implic. 3, 11 (2018). https://doi.org/10.1186/s41235-018-0095-6

    Article  Google Scholar 

  2. Shen, Y., Lin, Y., Liu, S., Fang, L., Liu, G.: Sustained effect of music training on the enhancement of executive function in preschool children. Front. Psychol. 10, 1910 (2019). https://doi.org/10.3389/fpsyg.2019.01910

    Article  Google Scholar 

  3. Moreno, S., et al.: Short-term music training enhances verbal intelligence and executive function. Psychol. Sci. 22, 1425–1433 (2011). https://doi.org/10.1177/0956797611416999

    Article  Google Scholar 

  4. Sala, G., Gobet, F.: Cognitive and academic benefits of music training with children: a multilevel meta-analysis. Mem. Cognit. 48, 1429–1441 (2020). https://doi.org/10.3758/s13421-020-01060-2

    Article  Google Scholar 

  5. Di Mauro, M., Toffalini, E., Grassi, M., Petrini, K.: Effect of long-term music training on emotion perception from drumming improvisation. Front. Psychol. 9, 2168 (2018). https://doi.org/10.3389/fpsyg.2018.02168

    Article  Google Scholar 

  6. Schellenberg, E.G., Mankarious, M.: Music training and emotion comprehension in childhood. Emotion 12, 887–891 (2012). https://doi.org/10.1037/a0027971

    Article  Google Scholar 

  7. Rodrigues, A.C., Loureiro, M.A., Caramelli, P.: Musical training, neuroplasticity and cognition. Dement Neuropsychol. 4, 277–286 (2010). https://doi.org/10.1590/S1980-57642010DN40400005

    Article  Google Scholar 

  8. Hyde, K.L., et al.: The effects of musical training on structural brain development: a longitudinal study. Ann. N. Y. Acad. Sci. 1169, 182–186 (2009). https://doi.org/10.1111/j.1749-6632.2009.04852.x

    Article  Google Scholar 

  9. Choi, U.S., Sung, Y.W., Ogawa, S.: Brain plasticity reflects specialized cognitive development induced by musical training. Cereb Cortex Commun. 2, tgab037 (2021). https://doi.org/10.1093/texcom/tgab037

  10. Lv, Y.T., et al.: Correlations in spontaneous activity and gray matter density between left and right sensoritmotor areas of pianists. NeuroReport 19, 631–634 (2008). https://doi.org/10.1097/WNR.0b013e3282fa6da0

    Article  Google Scholar 

  11. Damoiseaux, J.S., et al.: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 103, 13848–13853 (2006). https://doi.org/10.1073/pnas.0601417103

    Article  Google Scholar 

  12. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007). https://doi.org/10.1038/nrn2201

    Article  Google Scholar 

  13. Zhang, S., Li, C.S.: Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connect. 4, 53–69 (2014). https://doi.org/10.1089/brain.2013.0191

    Article  Google Scholar 

  14. Smith, S.M., et al.: Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011). https://doi.org/10.1016/j.neuroimage.2010.08.063

    Article  Google Scholar 

  15. Tian, L., Ren, J., Zang, Y.: Regional homogeneity of resting state fMRI signals predicts Stop signal task performance. Neuroimage 60, 539–544 (2012). https://doi.org/10.1016/j.neuroimage.2011.11.098

    Article  Google Scholar 

  16. Li, Q., et al.: Musical training induces functional and structural auditory-motor network plasticity in young adults. Hum. Brain Mapp. 39, 2098–2110 (2018). https://doi.org/10.1002/hbm.23989

    Article  Google Scholar 

  17. Park, H.J., Friston, K.: Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013). https://doi.org/10.1126/science.1238411

    Article  Google Scholar 

  18. Leipold, S., Klein, C., Jancke, L.: Musical expertise shapes functional and structural brain networks independent of absolute pitch ability. J. Neurosci. 41, 2496–2511 (2021). https://doi.org/10.1523/JNEUROSCI.1985-20.2020

    Article  Google Scholar 

  19. Button, K.S., et al.: Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013). https://doi.org/10.1038/nrn3475

    Article  Google Scholar 

  20. Snyder, P.J., Harris, L.J.: Handedness, sex, and familial sinistrality effects on spatial tasks. Cortex 29, 115–134 (1993). https://doi.org/10.1016/s0010-9452(13)80216-x

    Article  Google Scholar 

  21. Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50, 81–98 (2010). https://doi.org/10.1016/j.neuroimage.2009.12.011

    Article  Google Scholar 

  22. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351 (2016). https://doi.org/10.1007/s12021-016-9299-4

    Article  Google Scholar 

  23. Chao-Gan, Y., Yu-Feng, Z.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010). https://doi.org/10.3389/fnsys.2010.00013

    Article  Google Scholar 

  24. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  Google Scholar 

  25. Yan, C.G., Craddock, R.C., He, Y., Milham, M.P.: Addressing head motion dependencies for small-world topologies in functional connectomics. Front. Hum. Neurosci. 7, 910 (2013). https://doi.org/10.3389/fnhum.2013.00910

    Article  Google Scholar 

  26. Kuhn, S., Vanderhasselt, M.A., De Raedt, R., Gallinat, J.: Why ruminators won’t stop: the structural and resting state correlates of rumination and its relation to depression. J. Affect. Disord. 141, 352–360 (2012). https://doi.org/10.1016/j.jad.2012.03.024

    Article  Google Scholar 

  27. Dosenbach, N.U., et al.: Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010). https://doi.org/10.1126/science.1194144

    Article  Google Scholar 

  28. Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). https://doi.org/10.1152/jn.00338.2011

    Article  Google Scholar 

  29. Luo, C., et al.: Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state FMRI. PLoS ONE 7, e36568 (2012). https://doi.org/10.1371/journal.pone.0036568

    Article  Google Scholar 

  30. Luo, C., et al.: Long-term effects of musical training and functional plasticity in salience system. Neural Plast. 2014, 180138 (2014). https://doi.org/10.1155/2014/180138

    Article  Google Scholar 

  31. Hou, J., Chen, C., Dong, Q.: Resting-state functional connectivity and pitch identification ability in non-musicians. Front. Neurosci. 9, 7 (2015). https://doi.org/10.3389/fnins.2015.00007

    Article  Google Scholar 

  32. Huang, H., et al.: Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis. Brain Struct. Funct. 223(1), 131–144 (2017). https://doi.org/10.1007/s00429-017-1479-y

    Article  Google Scholar 

  33. Dayan, E., Cohen, L.G.: Neuroplasticity subserving motor skill learning. Neuron 72, 443–454 (2011). https://doi.org/10.1016/j.neuron.2011.10.008

    Article  Google Scholar 

  34. Hardwick, R.M., Rottschy, C., Miall, R.C., Eickhoff, S.B.: A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67, 283–297 (2013). https://doi.org/10.1016/j.neuroimage.2012.11.020

    Article  Google Scholar 

  35. Gates, N. J. et al.: Computerised cognitive training for 12 or more weeks for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst Rev. 2, CD012277 (2020). https://doi.org/10.1002/14651858.CD012277.pub3

  36. Hikosaka, O., Nakamura, K., Sakai, K., Nakahara, H.: Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222 (2002). https://doi.org/10.1016/s0959-4388(02)00307-0

    Article  Google Scholar 

  37. Braunlich, K., Seger, C.: The basal ganglia. Wiley Interdiscip. Rev. Cogn. Sci. 4, 135–148 (2013). https://doi.org/10.1002/wcs.1217

    Article  Google Scholar 

  38. Walz, A.D., et al.: Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training. Behav. Brain Res. 278, 393–403 (2015). https://doi.org/10.1016/j.bbr.2014.08.044

    Article  Google Scholar 

  39. Alexander, G.E., Crutcher, M.D.: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990). https://doi.org/10.1016/0166-2236(90)90107-l

    Article  Google Scholar 

  40. Middleton, F.A., Strick, P.L.: Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb. Cortex 12, 926–935 (2002). https://doi.org/10.1093/cercor/12.9.926

    Article  Google Scholar 

  41. Leisman, G., Melillo, R.: The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev. Neurosci. 24, 9–25 (2013). https://doi.org/10.1515/revneuro-2012-0067

    Article  Google Scholar 

  42. Hou, J., et al.: Mirror neuron activation of musicians and non-musicians in response to motion captured piano performances. Brain Cogn. 115, 47–55 (2017). https://doi.org/10.1016/j.bandc.2017.04.001

    Article  Google Scholar 

  43. Kristeva, R., Chakarov, V., Schulte-Monting, J., Spreer, J.: Activation of cortical areas in music execution and imagining: a high-resolution EEG study. Neuroimage 20, 1872–1883 (2003). https://doi.org/10.1016/s1053-8119(03)00422-1

    Article  Google Scholar 

  44. Peyron, R., Quesada, C., Fauchon, C.: Cingulate-mediated approaches to treating chronic pain. Handb. Clin. Neurol. 166, 317–326 (2019). https://doi.org/10.1016/B978-0-444-64196-0.00017-0

    Article  Google Scholar 

  45. Leech, R., Sharp, D.J.: The role of the posterior cingulate cortex in cognition and disease. Brain. 137, 12–32 (2014). https://doi.org/10.1093/brain/awt162

  46. Alluri, V., et al.: Connectivity patterns during music listening: evidence for action-based processing in musicians. Hum. Brain Mapp. 38, 2955–2970 (2017). https://doi.org/10.1002/hbm.23565

    Article  Google Scholar 

  47. Olszewska, A.M., Gaca, M., Herman, A.M., Jednorog, K., Marchewka, A.: How musical training shapes the adult brain: predispositions and neuroplasticity. Front. Neurosci. 15, 630829 (2021). https://doi.org/10.3389/fnins.2021.630829

    Article  Google Scholar 

  48. Belden, A., et al.: Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity. Neuroimage 207, 116384 (2020). https://doi.org/10.1016/j.neuroimage.2019.116384

    Article  Google Scholar 

  49. Faller, J., Goldman, A., Lin, Y., McIntosh, J.R., Sajda, P.: Spatiospectral brain networks reflective of improvisational experience. Neuroimage 242, 118458 (2021). https://doi.org/10.1016/j.neuroimage.2021.118458

    Article  Google Scholar 

  50. Bermudez, P., Lerch, J.P., Evans, A.C., Zatorre, R.J.: Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb. Cortex 19, 1583–1596 (2009). https://doi.org/10.1093/cercor/bhn196

    Article  Google Scholar 

  51. Eickhoff, S., et al.: High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum. Brain Mapp. 24, 206–215 (2005). https://doi.org/10.1002/hbm.20082

    Article  Google Scholar 

  52. Gittins, R., Harrison, P.J.: A quantitative morphometric study of the human anterior cingulate cortex. Brain Res. 1013, 212–222 (2004). https://doi.org/10.1016/j.brainres.2004.03.064

    Article  Google Scholar 

  53. James, C.E., et al.: Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct. Funct. 219, 353–366 (2014). https://doi.org/10.1007/s00429-013-0504-z

    Article  Google Scholar 

  54. Koutstaal, W., et al.: Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 39, 184–199 (2001). https://doi.org/10.1016/s0028-3932(00)00087-7

    Article  Google Scholar 

  55. Gaser, C., Schlaug, G.: Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003)

    Article  Google Scholar 

  56. Babiloni, C., et al.: Neural efficiency” of experts’ brain during judgment of actions: a high-resolution EEG study in elite and amateur karate athletes. Behav. Brain Res. 207, 466–475 (2010). https://doi.org/10.1016/j.bbr.2009.10.034

    Article  Google Scholar 

  57. Mason, M.F., et al.: Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007). https://doi.org/10.1126/science.1131295

    Article  Google Scholar 

  58. Taylor, V.A., et al.: Impact of meditation training on the default mode network during a restful state. Soc Cogn Affect Neurosci. 8, 4–14 (2013). https://doi.org/10.1093/scan/nsr087

    Article  Google Scholar 

  59. de Pasquale, F., et al.: The connectivity of functional cores reveals different degrees of segregation and integration in the brain at rest. Neuroimage 69, 51–61 (2013). https://doi.org/10.1016/j.neuroimage.2012.11.051

    Article  Google Scholar 

  60. Li, R., et al.: Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study. Neuroimage 56, 1035–1042 (2011). https://doi.org/10.1016/j.neuroimage.2011.03.010

    Article  Google Scholar 

  61. Li, L., et al.: Eight-week antidepressant treatment reduces functional connectivity in first-episode drug-naive patients with major depressive disorder. Hum. Brain Mapp. 42, 2593–2605 (2021). https://doi.org/10.1002/hbm.25391

    Article  Google Scholar 

  62. Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kotter, R.: Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci U S A. 106, 10302–10307 (2009). https://doi.org/10.1073/pnas.0901831106

    Article  Google Scholar 

  63. Chen, G., Chen, G., Xie, C., Li, S.J.: Negative functional connectivity and its dependence on the shortest path length of positive network in the resting-state human brain. Brain Connect. 1, 195–206 (2011). https://doi.org/10.1089/brain.2011.0025

    Article  Google Scholar 

  64. Patel, R., Spreng, R.N., Turner, G.R.: Functional brain changes following cognitive and motor skills training: a quantitative meta-analysis. Neurorehabil. Neural Repair 27, 187–199 (2013). https://doi.org/10.1177/1545968312461718

    Article  Google Scholar 

  65. Jolles, D.D., Grol, M.J., Van Buchem, M.A., Rombouts, S.A., Crone, E.A.: Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52, 658–668 (2010). https://doi.org/10.1016/j.neuroimage.2010.04.028

    Article  Google Scholar 

  66. Lebedev, A.V., Nilsson, J., Lovden, M.: Working memory and reasoning benefit from different modes of large-scale brain dynamics in healthy older adults. J. Cogn. Neurosci. 30, 1033–1046 (2018). https://doi.org/10.1162/jocn_a_01260

    Article  Google Scholar 

  67. Spreng, R.N., Turner, G.R.: The Shifting Architecture of Cognition and Brain Function in Older Adulthood. Perspect. Psychol. Sci. 14, 523–542 (2019). https://doi.org/10.1177/1745691619827511

    Article  Google Scholar 

  68. Baggio, H.C., et al.: Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum. Brain Mapp. 36, 199–212 (2015). https://doi.org/10.1002/hbm.22622

    Article  Google Scholar 

  69. Trujillo, P., et al.: Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson’s disease. Cortex 115, 99–111 (2019). https://doi.org/10.1016/j.cortex.2019.01.016

    Article  Google Scholar 

  70. Li, L., et al.: Brain functional changes in patients with Crohn’s disease: a resting-state fMRI study. Brain Behav. 11, e2243 (2021). https://doi.org/10.1002/brb3.2243

    Article  Google Scholar 

  71. Castellanos, F.X., Aoki, Y.: Intrinsic functional connectivity in attention-deficit/hyperactivity disorder: a science in development. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 1, 253–261 (2016). https://doi.org/10.1016/j.bpsc.2016.03.004

    Article  Google Scholar 

  72. Baik, J.H.: Stress and the dopaminergic reward system. Exp. Mol. Med. 52, 1879–1890 (2020). https://doi.org/10.1038/s12276-020-00532-4

    Article  Google Scholar 

  73. Ferreri, L., et al.: Dopamine modulates the reward experiences elicited by music. Proc Natl Acad Sci U S A. 116, 3793–3798 (2019). https://doi.org/10.1073/pnas.1811878116

    Article  Google Scholar 

  74. Cocker, P.J., Le Foll, B., Rogers, R.D., Winstanley, C.A.: A selective role for dopamine D(4) receptors in modulating reward expectancy in a rodent slot machine task. Biol. Psychiatry 75, 817–824 (2014). https://doi.org/10.1016/j.biopsych.2013.08.026

    Article  Google Scholar 

  75. Miendlarzewska, E.A., Trost, W.J.: How musical training affects cognitive development: rhythm, reward and other modulating variables. Front Neurosci. 7, 279 (2013). https://doi.org/10.3389/fnins.2013.00279

    Article  Google Scholar 

  76. Nemirovsky, S.I., Avale, M.E., Brunner, D., Rubinstein, M.: Reward-seeking and discrimination deficits displayed by hypodopaminergic mice are prevented in mice lacking dopamine D4 receptors. Synapse. 63, 991–997 (2009). https://doi.org/10.1002/syn.20680

    Article  Google Scholar 

  77. Steele, C.J., Bailey, J.A., Zatorre, R.J., Penhune, V.B.: Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J. Neurosci. 33, 1282–1290 (2013). https://doi.org/10.1523/JNEUROSCI.3578-12.2013

    Article  Google Scholar 

  78. Wang, L., Liu, Q., Shen, H., Li, H., Hu, D.: Large-scale functional brain network changes in taxi drivers: evidence from resting-state fMRI. Hum. Brain Mapp. 36, 862–871 (2015). https://doi.org/10.1002/hbm.22670

    Article  Google Scholar 

  79. Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L., Corbetta, M.: Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A. 106, 17558–17563 (2009). https://doi.org/10.1073/pnas.0902455106

    Article  Google Scholar 

  80. Rizzolatti, G., Matelli, M.: Two different streams form the dorsal visual system: anatomy and functions. Exp. Brain Res. 153, 146–157 (2003). https://doi.org/10.1007/s00221-003-1588-0

    Article  Google Scholar 

  81. Gusnard, D.A., Raichle, M.E., Raichle, M.E.: Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001). https://doi.org/10.1038/35094500

    Article  Google Scholar 

  82. Leech, R., Kamourieh, S., Beckmann, C.F., Sharp, D.J.: Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224 (2011). https://doi.org/10.1523/JNEUROSCI.5626-10.2011

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the 111 Project from the Ministry of Education of China (B07008). We thank all graduate research assistants who helped us with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Dong .

Editor information

Editors and Affiliations

Ethics declarations

All authors have no conflicting interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, J., Chen, C., Dong, Q. (2024). Musical Training Changes the Intra- and Inter-network Functional Connectivity. In: Li, X., Guan, X., Tie, Y., Zhang, X., Zhou, Q. (eds) Music Intelligence. SOMI 2023. Communications in Computer and Information Science, vol 2007. Springer, Singapore. https://doi.org/10.1007/978-981-97-0576-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0576-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0575-7

  • Online ISBN: 978-981-97-0576-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics