Skip to main content

Orientable Burning Number of Graphs

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2024)

Abstract

In this paper, we introduce the problem of finding an orientation of a given undirected graph that maximizes the burning number of the resulting directed graph. We show that the problem is polynomial-time solvable on Kőnig–Egerváry graphs (and thus on bipartite graphs) and that an almost optimal solution can be computed in polynomial time for perfect graphs. On the other hand, we show that the problem is NP-hard in general and W[1]-hard parameterized by the target burning number. The hardness results are complemented by several fixed-parameter tractable results parameterized by structural parameters. Our main result in this direction shows that the problem is fixed-parameter tractable parameterized by cluster vertex deletion number plus clique number (and thus also by vertex cover number).

Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP20H05793, JP21K11752, JP22H00513, JP23KJ1066. The full version of this paper is available at https://arxiv.org/abs/2311.13132.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a directed graph, a vertex dominates itself and its out-neighbors.

  2. 2.

    There is another way for handling orientation by using a variant of MSO\(_{2}\) defined for directed graphs, where we can fix an arbitrary orientation first (without using a k-coloring) and then represent reversed edges by an edge set. See e.g., [18].

References

  1. Alon, N.: Transmitting in the \(n\)-dimensional cube. Discret. Appl. Math. 37(38), 9–11 (1992). https://doi.org/10.1016/0166-218X(92)90121-P

    Article  MathSciNet  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-6774(91)90006-K

    Article  MathSciNet  Google Scholar 

  3. Ashok, P., Das, S., Kanesh, L., Saurabh, S., Tomar, A., Verma, S.: Burn and win. In: Hsieh, S.Y., Hung, L.J., Lee, C.W. (eds.) IWOCA 2023. LNCS, vol. 13889, pp. 36–48. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34347-6_4

    Chapter  Google Scholar 

  4. Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discret. Appl. Math. 232, 73–87 (2017). https://doi.org/10.1016/j.dam.2017.07.016

    Article  MathSciNet  Google Scholar 

  5. Bonato, A.: A survey of graph burning. Contributions Discret. Math. 16(1), 185–197 (2021). https://doi.org/10.11575/cdm.v16i1.71194

    Article  MathSciNet  Google Scholar 

  6. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13123-8_2

    Chapter  Google Scholar 

  7. Bonato, A., Janssen, J.C.M., Roshanbin, E.: How to burn a graph. Internet Math. 12(1–2), 85–100 (2016). https://doi.org/10.1080/15427951.2015.1103339

    Article  MathSciNet  Google Scholar 

  8. Bonomo-Braberman, F., Durán, G., Safe, M.D., Wagler, A.K.: On some graph classes related to perfect graphs: a survey. Discret. Appl. Math. 281, 42–60 (2020). https://doi.org/10.1016/j.dam.2019.05.019

    Article  MathSciNet  Google Scholar 

  9. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5 &6), 555–581 (1992). https://doi.org/10.1007/BF01758777

    Article  MathSciNet  Google Scholar 

  10. Caro, Y., Henning, M.A.: A greedy partition lemma for directed domination. Discret. Optim. 8(3), 452–458 (2011). https://doi.org/10.1016/j.disopt.2011.03.003

    Article  MathSciNet  Google Scholar 

  11. Caro, Y., Henning, M.A.: Directed domination in oriented graphs. Discret. Appl. Math. 160(7–8), 1053–1063 (2012). https://doi.org/10.1016/j.dam.2011.12.027

    Article  MathSciNet  Google Scholar 

  12. Chartrand, G., VanderJagt, D.W., Yue, B.Q.: Orientable domination in graphs. Congr. Numer. 119, 51–63 (1996)

    MathSciNet  Google Scholar 

  13. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Comb. Theory Ser. B 24(1), 61–75 (1978). https://doi.org/10.1016/0095-8956(78)90078-3

    Article  MathSciNet  Google Scholar 

  14. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  Google Scholar 

  15. Courcelle, B.: The monadic second-order logic of graphs VIII: orientations. Ann. Pure Appl. Log. 72(2), 103–143 (1995). https://doi.org/10.1016/0168-0072(95)94698-V

    Article  MathSciNet  Google Scholar 

  16. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  17. Egerváry, J.: Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai Lapok 38, 16–28 (1931)

    Google Scholar 

  18. Eggemann, N., Noble, S.D.: The complexity of two graph orientation problems. Discret. Appl. Math. 160(4–5), 513–517 (2012). https://doi.org/10.1016/j.dam.2011.10.036

    Article  MathSciNet  Google Scholar 

  19. Erdős, P.: On a problem in graph theory. Math. Gaz. 47(361), 220–223 (1963). https://doi.org/10.2307/3613396

    Article  MathSciNet  Google Scholar 

  20. Gallai, T.: On directed graphs and circuits. In: Theory of Graphs (Proceedings of the Colloquium held at Tihany), pp. 115–118 (1968)

    Google Scholar 

  21. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci. 918, 60–76 (2022). https://doi.org/10.1016/j.tcs.2022.03.021

    Article  MathSciNet  Google Scholar 

  22. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-97881-4

    Book  Google Scholar 

  23. Gutin, G.Z.: Minimizing and maximizing the diameter in orientations of graphs. Graphs Comb. 10(2–4), 225–230 (1994). https://doi.org/10.1007/BF02986669

    Article  MathSciNet  Google Scholar 

  24. Harutyunyan, A., Le, T., Newman, A., Thomassé, S.: Domination and fractional domination in digraphs. Electron. J. Comb. 25(3), 3 (2018). https://doi.org/10.37236/7211

    Article  Google Scholar 

  25. Hasse, M.: Zur algebraischen begründung der graphentheorie. i. Mathematische Nachrichten 28(5–6), 275–290 (1965). https://doi.org/10.1002/mana.19650280503

    Article  Google Scholar 

  26. Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008). https://doi.org/10.1093/comjnl/bxm052

    Article  Google Scholar 

  27. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010). https://doi.org/10.1007/s00224-008-9150-x

    Article  MathSciNet  Google Scholar 

  28. Jaffke, L., Bodlaender, H.L., Heggernes, P., Telle, J.A.: Definability equals recognizability for \(k\)-outerplanar graphs and \(l\)-chordal partial \(k\)-trees. Eur. J. Comb. 66, 191–234 (2017). https://doi.org/10.1016/j.ejc.2017.06.025

    Article  MathSciNet  Google Scholar 

  29. Janssen, R.: The burning number of directed graphs: bounds and computational complexity. Theory Appl. Graphs 7(1), Article 8 (2020). https://doi.org/10.20429/tag.2020.070108

  30. Kare, A.S., Vinod Reddy, I.: Parameterized algorithms for graph burning problem. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 304–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_25

    Chapter  Google Scholar 

  31. Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)

    Google Scholar 

  32. Kobayashi, Y., Otachi, Y.: Parameterized complexity of graph burning. Algorithmica 84(8), 2379–2393 (2022). https://doi.org/10.1007/s00453-022-00962-8

    Article  MathSciNet  Google Scholar 

  33. Landau, H.G.: On dominance relations and the structure of animal societies: III the condition for a score structure. Bull. Math. Biophys. 15, 143–148 (1953). https://doi.org/10.1007/BF02476378

    Article  MathSciNet  Google Scholar 

  34. Lieskovský, M., Sgall, J.: Graph burning and non-uniform \(k\)-centers for small treewidth. In: Chalermsook, P., Laekhanukit, B. (eds.) WAOA 2022. LNCS, vol. 13538, pp. 20–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18367-6_2

    Chapter  Google Scholar 

  35. Lieskovský, M., Sgall, J., Feldmann, A.E.: Approximation algorithms and lower bounds for graph burning. In: APPROX/RANDOM 2023. LIPIcs, vol. 275, pp. 9:1–9:17 (2023). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.9

  36. Liu, H., Hu, X., Hu, X.: Burning number of caterpillars. Discret. Appl. Math. 284, 332–340 (2020). https://doi.org/10.1016/j.dam.2020.03.062

    Article  MathSciNet  Google Scholar 

  37. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discret. Math. 2(3), 253–267 (1972). https://doi.org/10.1016/0012-365X(72)90006-4

    Article  MathSciNet  Google Scholar 

  38. Martinsson, A.: On the approximability of the burning number. CoRR abs/2308.04390 (2023). https://doi.org/10.48550/arXiv.2308.04390

  39. Maure, S.B.: The king chicken theorems. Math. Mag. 53(2), 67–80 (1980). https://doi.org/10.2307/2689952

    Article  MathSciNet  Google Scholar 

  40. Mondal, D., Rajasingh, A.J., Parthiban, N., Rajasingh, I.: APX-hardness and approximation for the \(k\)-burning number problem. Theor. Comput. Sci. 932, 21–30 (2022). https://doi.org/10.1016/J.TCS.2022.08.001

    Article  MathSciNet  Google Scholar 

  41. Norin, S., Turcotte, J.: The burning number conjecture holds asymptotically. CoRR abs/2207.04035 (2022). https://doi.org/10.48550/arXiv.2207.04035

  42. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Revue française d’informatique et de recherche opérationnelle 1(5), 129–132 (1967). https://doi.org/10.1051/m2an/1967010501291

    Article  MathSciNet  Google Scholar 

  43. Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means of boolean powers of the incidence matrix. In: Doklady Akademii Nauk. vol. 147, pp. 758–759. Russian Academy of Sciences (1962), https://www.mathnet.ru/eng/dan27289

  44. Woeginger, G.J.: The trouble with the second quantifier. 4OR 19(2), 157–181 (2021). https://doi.org/10.1007/s10288-021-00477-y

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yota Otachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Courtiel, J., Dorbec, P., Gima, T., Lecoq, R., Otachi, Y. (2024). Orientable Burning Number of Graphs. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0566-5_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0565-8

  • Online ISBN: 978-981-97-0566-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics