Skip to main content

Canonization of a Random Circulant Graph by Counting Walks

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14549))

Included in the following conference series:

  • 80 Accesses

Abstract

It is well known that almost all graphs are canonizable by a simple combinatorial routine known as color refinement. With high probability, this method assigns a unique label to each vertex of a random input graph and, hence, it is applicable only to asymmetric graphs. The strength of combinatorial refinement techniques becomes a subtle issue if the input graphs are highly symmetric. We prove that the combination of color refinement with vertex individualization produces a canonical labeling for almost all circulant digraphs (Cayley digraphs of a cyclic group). To our best knowledge, this is the first application of combinatorial refinement in the realm of vertex-transitive graphs. Remarkably, we do not even need the full power of the color refinement algorithm. We show that the canonical label of a vertex v can be obtained just by counting walks of each length from v to an individualized vertex.

O. Verbitsky was supported by DFG grant KO 1053/8–2. He is on leave from the IAPMM, Lviv, Ukraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that \(\mathbb {Q}(\zeta _n)\) is obtained by adjoining \(\zeta _n\) to the field of rationals \(\mathbb {Q}\). In other words, this is the smallest subfield of \(\mathbb {C}\) containing \(\mathbb {Q}\) and \(\zeta _n\).

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1998)

    Google Scholar 

  2. Babai, L.: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hung. 29(3–4), 329–336 (1977). https://doi.org/10.1007/BF01895854

    Article  MathSciNet  Google Scholar 

  3. Babai, L., Chen, X., Sun, X., Teng, S., Wilmes, J.: Faster canonical forms for strongly regular graphs. In: 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pp. 157–166. IEEE Computer Society (2013). https://doi.org/10.1109/FOCS.2013.25

  4. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput. 9(3), 628–635 (1980)

    Article  MathSciNet  Google Scholar 

  5. Bach, E., Shallit, J.: Algorithmic Number Theory: Efficient Algorithms. The MIT Press, Cambridge (1996)

    Google Scholar 

  6. Berkholz, C., Bonsma, P.S., Grohe, M.: Tight lower and upper bounds for the complexity of canonical colour refinement. Theory Comput. Syst. 60(4), 581–614 (2017). https://doi.org/10.1007/s00224-016-9686-0

    Article  MathSciNet  Google Scholar 

  7. Bhoumik, S., Dobson, T., Morris, J.: On the automorphism groups of almost all circulant graphs and digraphs. Ars Math. Contemp. 7(2), 499–518 (2014). https://doi.org/10.26493/1855-3974.315.868

    Article  MathSciNet  Google Scholar 

  8. Bollobás, B.: Distinguishing vertices of random graphs. Ann. Discrete Math. 13, 33–49 (1982). https://doi.org/10.1016/S0304-0208(08)73545-X

    Article  MathSciNet  Google Scholar 

  9. Bose, A., Saha, K.: Random Circulant Matrices. CRC Press, Boca Raton (2019). https://doi.org/10.1201/9780429435508

    Book  Google Scholar 

  10. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992). https://doi.org/10.1007/BF01305232

    Article  MathSciNet  Google Scholar 

  11. Cardon, A., Crochemore, M.: Partitioning a graph in \(O(|A| \log _2 |V|)\). Theor. Comput. Sci. 19, 85–98 (1982)

    Article  Google Scholar 

  12. Davis, P.J.: Circulant Matrices, 2nd edn. AMS Chelsea Publishing, New York (1994)

    Google Scholar 

  13. Dobson, E., Spiga, P., Verret, G.: Cayley graphs on abelian groups. Combinatorica 36(4), 371–393 (2016). https://doi.org/10.1007/s00493-015-3136-5

    Article  MathSciNet  Google Scholar 

  14. Dobson, T., Malnič, A., Marušič, D.: Symmetry in Graphs. Cambridge Studies in Advanced Mathematics, vol. 198. Cambridge University Press, Cambridge (2022). https://doi.org/10.1017/9781108553995

    Book  Google Scholar 

  15. Drozd, Y.A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer, Berlin (1994). https://doi.org/10.1007/978-3-642-76244-4

    Book  Google Scholar 

  16. Evdokimov, S., Ponomarenko, I.: Circulant graphs: recognizing and isomorphism testing in polynomial time. St. Petersburg Math. J. 15(6), 813–835 (2004)

    Article  MathSciNet  Google Scholar 

  17. Fuhlbrück, F., Köbler, J., Ponomarenko, I., Verbitsky, O.: The Weisfeiler-Leman algorithm and recognition of graph properties. Theor. Comput. Sci. 895, 96–114 (2021). https://doi.org/10.1016/j.tcs.2021.09.033

    Article  MathSciNet  Google Scholar 

  18. Godsil, C.: Controllable subsets in graphs. Ann. Comb. 16(4), 733–744 (2012). https://doi.org/10.1007/s00026-012-0156-3

    Article  MathSciNet  Google Scholar 

  19. Hagos, E.M.: Some results on graph spectra. Linear Algebra Appl. 356(1–3), 103–111 (2002). https://doi.org/10.1016/S0024-3795(02)00324-5

    Article  MathSciNet  Google Scholar 

  20. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-4478-3_5

    Chapter  Google Scholar 

  21. Kiefer, S., Ponomarenko, I., Schweitzer, P.: The Weisfeiler-Leman dimension of planar graphs is at most 3. J. ACM 66(6), 44:1–44:31 (2019). https://doi.org/10.1145/3333003

  22. Kluge, L.: Combinatorial refinement on circulant graphs. Technical report (2022). arxiv.org/abs/2204.01054

  23. Kucera, L.: Canonical labeling of regular graphs in linear average time. In: 28th Annual Symposium on Foundations of Computer Science (FOCS 1987), pp. 271–279 (1987). https://doi.org/10.1109/SFCS.1987.11

  24. Liu, F., Siemons, J.: Unlocking the walk matrix of a graph. J. Algebraic Comb. 55(3), 663–690 (2022). https://doi.org/10.1007/s10801-021-01065-3

    Article  MathSciNet  Google Scholar 

  25. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

    Article  MathSciNet  Google Scholar 

  26. Meckes, M.W.: Some results on random circulant matrices. In: High Dimensional Probability. V: The Luminy Volume, pp. 213–223. IMS, Institute of Mathematical Statistics, Beachwood (2009). https://doi.org/10.1214/09-IMSCOLL514

  27. Muzychuk, M.: A solution of the isomorphism problem for circulant graphs. Proc. Lond. Math. Soc. 88(1), 1–41 (2004). https://doi.org/10.1112/S0024611503014412

    Article  MathSciNet  Google Scholar 

  28. Muzychuk, M.E., Klin, M.H., Pöschel, R.: The isomorphism problem for circulant graphs via Schur ring theory. In: Codes and Association Schemes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 56, pp. 241–264. DIMACS/AMS (1999). https://doi.org/10.1090/dimacs/056/19

  29. O’Rourke, S., Touri, B.: On a conjecture of Godsil concerning controllable random graphs. SIAM J. Control. Optim. 54(6), 3347–3378 (2016). https://doi.org/10.1137/15M1049622

    Article  MathSciNet  Google Scholar 

  30. Ponomarenko, I.: On the WL-dimension of circulant graphs of prime power order. Technical report (2022). http://arxiv.org/abs/2206.15028

  31. Powers, D.L., Sulaiman, M.M.: The walk partition and colorations of a graph. Linear Algebra Appl. 48, 145–159 (1982). https://doi.org/10.1016/0024-3795(82)90104-5

    Article  MathSciNet  Google Scholar 

  32. Verbitsky, O., Zhukovskii, M.: Canonization of a random circulant graph by counting walks. Technical report (2023). arxiv.org/abs/2310.05788

  33. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the algebra which appears therein. NTI, Ser. 2(9), 12–16 (1968). English translation is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Verbitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verbitsky, O., Zhukovskii, M. (2024). Canonization of a Random Circulant Graph by Counting Walks. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0566-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0565-8

  • Online ISBN: 978-981-97-0566-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics