Skip to main content

Enhanced Vibration Characteristics of Honeycomb Plates Composed of Metamaterials with NTE

  • Conference paper
  • First Online:
Advances in Applied Nonlinear Dynamics, Vibration, and Control – 2023 (ICANDVC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1152))

  • 375 Accesses

Abstract

Mechanical metamaterials with tailorable negative thermal expansion (NTE) are significant and potential to be applied in stability control, precise instrument, space equipment, etc. This paper established the honeycomb plates which are composed of metamaterial lattices consisting of trapezoid units with NTE. The vibration characteristics of these honeycomb plates were analyzed by Euler beam elements in finite element analysis. The frequency characteristics and harmonic response analysis of these honeycomb plates were investigated under uniform temperature increments. In addition, the effects of geometric parameters on the fundamental frequency and thermal stress were discussed. Finally, the fundamental frequency and thermal stress were compared between the present metamaterials with trapezoid units and the corresponding metamaterials with triangular units. These results indicate that the NTE effect in metamaterials can enhance the fundamental frequency and reduce the deflection dynamic amplification factor of structures under uniformly raised temperatures. The present metamaterials provide a thought for designing and developing heat-resistant structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim, T.-C.: Mechanics of Metamaterials with Negative Parameters. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6446-8

    Book  Google Scholar 

  2. Chen, J., Xu, W., Wei, Z., Wei, K., Yang, X.: Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal expansion. Int. J. Mech. Sci. 202–203, 106527 (2021)

    Article  Google Scholar 

  3. Grima, J.N., Farrugia, P.S., Gatt, R., Zammit, V.: A system with adjustable positive or negative thermal expansion. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 463(2082), 1585–1596 (2007)

    MathSciNet  Google Scholar 

  4. Steeves, C.A., dos Santos e Lucato, S.L., He, M., Antinucci, E., Hutchinson, J.W., Evans, A.G.: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55(9), 1803–1822 (2007)

    Google Scholar 

  5. Berger, J., Mercer, C., McMeeking, R.M., Evans, A.G.: The design of bonded bimaterial lattices that combine low thermal expansion with high stiffness. J. Am. Ceram. Soc. 94(S1), 42–54 (2011)

    Article  Google Scholar 

  6. Toropova, M., Steeves, C.: Bimaterial lattices with anisotropic thermal expansion. J. Mech. Mater. Struct. 9(2), 227–244 (2014)

    Article  Google Scholar 

  7. Jefferson, G., Parthasarathy, T.A., Kerans, R.J.: Tailorable thermal expansion hybrid structures. Int. J. Solids Struct. 46(11), 2372–2387 (2009)

    Article  Google Scholar 

  8. Miller, W., Mackenzie, D.S., Smith, C.W., Evans, K.E.: A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative. Mech. Mater. 40, 351–361 (2008)

    Article  Google Scholar 

  9. Wei, K., Chen, H., Pei, Y., Fang, D.: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J. Mech. Phys. Solids 86, 173–191 (2016)

    Article  MathSciNet  Google Scholar 

  10. Wei, K., Peng, Y., Qu, Z., Zhou, H., Pei, Y., Fang, D.: Lightweight composite lattice cylindrical shells with novel character of tailorable thermal expansion. Int. J. Mech. Sci. 137, 77–85 (2018)

    Article  Google Scholar 

  11. Wei, K., Yang, Q., Ling, B., Qu, Z., Pei, Y., Fang, D.: Design and analysis of lattice cylindrical shells with tailorable axial and radial thermal expansion. Extreme Mech. Lett. 20, 51–58 (2018)

    Article  Google Scholar 

  12. Wei, K., Xiao, X., Chen, J., Wu, Y., Li, M., Wang, Z.: Additively manufactured bi-material metamaterial to program a wide range of thermal expansion. Mater. Des. 198, 109343 (2021)

    Article  Google Scholar 

  13. Wei, K., Peng, Y., Qu, Z., Pei, Y., Fang, D.: A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio. Int. J. Solids Struct. 150, 255–267 (2018)

    Article  Google Scholar 

  14. Liu, K.-J., Liu, H.-T., Li, J.: Thermal expansion and bandgap properties of bi-material triangle re-entrant honeycomb with adjustable Poisson’s ratio. Int. J. Mech. Sci. 242, 108015 (2023)

    Article  Google Scholar 

  15. Li, Y., Chen, Y., Li, T., Cao, S., Wang, L.: Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Compos. Struct. 189, 586–597 (2018)

    Article  Google Scholar 

  16. Lim, T.-C.: An auxetic metamaterial with tunable positive to negative hygrothermal expansion by means of counter‐rotating crosses. Physica Status Solidi (b) 258(8), 2100137 (2021)

    Google Scholar 

  17. Ai, L., Gao, X.L.: Metamaterials with negative Poisson’s ratio and non-positive thermal expansion. Compos. Struct. 162, 70–84 (2017)

    Article  Google Scholar 

  18. Raminhos, J.S., Borges, J.P., Velhinho, A.: Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Mater. Struct. 28(4), 045010 (2019)

    Article  Google Scholar 

  19. Xu, M., et al.: Planar bi-metallic lattice with tailorable coefficient of thermal expansion. Acta. Mech. Sin. 38(7), 421546 (2022)

    Article  MathSciNet  Google Scholar 

  20. Lim, T.-C.: Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Physica Status Solidi (b) 254(12), 1600775 (2017)

    Google Scholar 

  21. Lim, T.-C.: Negative environmental expansion for interconnected array of rings and sliding rods. Physica Status Solidi (b) 256(1), 1800032 (2019)

    Google Scholar 

  22. Wei, K., Peng, Y., Wen, W., Pei, Y., Fang, D.: Tailorable thermal expansion of lightweight and robust dual-constituent triangular lattice material. J. Appl. Mech. 84(10), 101006 (2017)

    Article  Google Scholar 

  23. Xu, H., Farag, A., Pasini, D.: Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal expansion. Acta Mater. 134, 155–166 (2017)

    Article  Google Scholar 

  24. Yu, H., et al.: Building block design for composite metamaterial with an ultra-low thermal expansion and high-level specific modulus. Compos. Struct. 300, 116131 (2022)

    Article  Google Scholar 

  25. Wei, K., Peng, Y., Wang, K., Duan, S., Yang, X., Wen, W.: Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion. Compos. Struct. 188, 287–296 (2018)

    Article  Google Scholar 

  26. Wang, K., et al.: Synergistically program thermal expansional and mechanical performances in 3D metamaterials: design-architecture-performance. J. Mech. Phys. Solids 169, 105064 (2022)

    Article  MathSciNet  Google Scholar 

  27. Peng, Y., Wei, K., Mei, M., Yang, X., Fang, D.: Simultaneously program thermal expansion and Poisson’s ratio in three dimensional mechanical metamaterial. Compos. Struct. 262, 113365 (2021)

    Article  Google Scholar 

  28. Xu, H., Pasini, D.: Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci. Rep. 6, 34924 (2016)

    Article  Google Scholar 

  29. Xu, H., Farag, A., Pasini, D.: Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks. J. Mech. Phys. Solids 117, 54–87 (2018)

    Article  MathSciNet  Google Scholar 

  30. Li, J., Liu, H.-T., Zhang, Z.-Y.: Stiffness characteristics for bi-directional tunable thermal expansion metamaterial based on bi-material triangular unit. Int. J. Mech. Sci. 241, 107983 (2023)

    Article  Google Scholar 

  31. Shen, L., Wei, K., Yuan, K., Shi, C., Li, Z., Wang, Z.: A novel metamaterial incorporating both auxeticity and thermal shrinkage. Int. J. Mech. Sci. 233, 107650 (2022)

    Article  Google Scholar 

  32. Wang, Y., Geng, L., Lian, Y., Xu, M., Fang, D.: Three-dimensional assembled dual-material lattice with tailorable thermal expansion: design method, modeling, and testing. Compos. Struct. 293, 115724 (2022)

    Article  Google Scholar 

  33. Yu, B., Xu, Z., Mu, R., Wang, A., Zhao, H.: Design of large-scale space lattice structure with near-zero thermal expansion metamaterials. Aerospace 10, 294 (2023)

    Article  Google Scholar 

  34. Zhang, Q., Sun, Y.: Novel metamaterial structures with negative thermal expansion and tunable mechanical properties. Int. J. Mech. Sci. 108692 (2023)

    Google Scholar 

  35. Yu, H., et al.: Metamaterials with a controllable thermal-mechanical stability: mechanical designs, theoretical predictions and experimental demonstrations. Compos. Sci. Technol. 207, 108694 (2021)

    Article  Google Scholar 

  36. Guo, X., et al.: Designing mechanical metamaterials with Kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion. Adv. Mater. 33(3), 2004919 (2021)

    Article  Google Scholar 

  37. Hopkins, J.B., Lange, K.J., Spadaccini, C.M.: Designing microstructural architectures with thermally actuated properties using freedom, actuation, and constraint topologies. J. Mech. Des. 135(6), 061004 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Sun, Y. (2024). Enhanced Vibration Characteristics of Honeycomb Plates Composed of Metamaterials with NTE. In: Jing, X., Ding, H., Ji, J., Yurchenko, D. (eds) Advances in Applied Nonlinear Dynamics, Vibration, and Control – 2023. ICANDVC 2023. Lecture Notes in Electrical Engineering, vol 1152. Springer, Singapore. https://doi.org/10.1007/978-981-97-0554-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0554-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0553-5

  • Online ISBN: 978-981-97-0554-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics