Skip to main content

Charged Particle Reconstruction for Future High Energy Colliders with Quantum Approximate Optimization Algorithm

  • Conference paper
  • First Online:
Intelligent Computers, Algorithms, and Applications (IC 2023)

Abstract

Usage of cutting-edge artificial intelligence will be the baseline at future high energy colliders such as the High-Luminosity Large Hadron Collider, to cope with the enormously increasing demand of the computing resources. The rapid development of quantum machine learning could bring in further paradigm-shifting improvement to this challenge. One of the two highest CPU-consuming components, the charged particle reconstruction, the so-called track reconstruction, can be considered as a quadratic unconstrained binary optimization (QUBO) problem. The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising algorithms to solve such combinatorial problems and to seek for a quantum advantage in the era of the Noisy Intermediate-Scale Quantum computers. It is found that the QAOA shows promising performance and demonstrated itself as one of the candidates for the track reconstruction using quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://acts.readthedocs.io/en/latest/

  2. https://github.com/derlin/hepqpr-qallse

  3. https://pyqpanda-algorithm-tutorial.readthedocs.io/en/latest/

  4. https://qcloud.originqc.com.cn/

  5. https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/index.html

  6. Amrouche, S., et al.: The tracking machine learning challenge: accuracy phase. In: Escalera, S., Herbrich, R. (eds.) The NeurIPS 2018 Competition. TSSCML, pp. 231–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29135-8_9

    Chapter  Google Scholar 

  7. Amrouche, S., et al.: The tracking machine learning challenge: throughput phase. Comput. Softw. Big Sci. 7(1), 1 (2023). https://doi.org/10.1007/s41781-023-00094-w

    Article  MathSciNet  Google Scholar 

  8. ATLAS Collaboration: The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/S08003

  9. ATLAS Collaboration: Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020

  10. ATLAS Collaboration: Fast track reconstruction for HL-LHC. ATL-PHYS-PUB-2019-041 (2019). https://cds.cern.ch/record/2693670

  11. Atobe, Y., Tawada, M., Togawa, N.: Hybrid annealing method based on subQUBO model extraction with multiple solution instances. IEEE Trans. Comp. 71(10), 2606 (2022)

    Article  Google Scholar 

  12. Bapst, F., et al.: A pattern recognition algorithm for quantum annealers. Comput. Softw. Big Sci. 4(1), 1–7 (2019). https://doi.org/10.1007/s41781-019-0032-5

    Article  Google Scholar 

  13. Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2020). https://doi.org/10.22331/q-2020-04-20-256

  14. BES IIII Collaboration: Design and construction of the BESIII detector. Nucl. Instrum. Meth. A 614, 345–399 (2010). https://doi.org/10.1016/j.nima.2009.12.050

  15. Bravyi, S., Kliesch, A., Koenig, R., Tang, E.: Obstacles to variational quantum optimization from symmetry protection. Phys. Rev. Lett. 125, 260505 (2020). https://doi.org/10.1103/PhysRevLett.125.260505

    Article  MathSciNet  Google Scholar 

  16. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  17. CEPC-SPPC Study Group: CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector. IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01 (2015)

    Google Scholar 

  18. CEPC-SPPC Study Group: CEPC-SPPC Preliminary Conceptual Design Report. 2. Accelerator. IHEP-CEPC-DR-2015-01, IHEP-AC-2015-01 (2015)

    Google Scholar 

  19. CEPC Study Group: CEPC Conceptual Design Report: Volume 1 - Accelerator. IHEP-CEPC-DR-2018-01, IHEP-AC-2018-01 (2018)

    Google Scholar 

  20. CEPC Study Group: CEPC Conceptual Design Report: Volume 2 - Physics & Detector. IHEP-CEPC-DR-2018-02, IHEP-EP-2018-01, IHEP-TH-2018-01 (2018)

    Google Scholar 

  21. Cerati, G.B.: Tracking and vertexing algorithms at high pileup. Conference Report CMS-CR-2014-345 (2014). https://cds.cern.ch/record/1966040

  22. CMS Collaboration: The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004

  23. CMS Collaboration: Observation of a new boson at a Mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). https://doi.org/10.1016/j.physletb.2012.08.021

  24. Crippa, A., et al.: Quantum algorithms for charged particle track reconstruction in the LUXE experiment. DESY-23-045, MIT-CTP/5481. arXiv:2304.01690 (2023)

  25. Evans, L., Bryant, P.: LHC machine. JINST 3, S08001 (2008). https://doi.org/10.1088/1748-0221/3/08/S08001

    Article  Google Scholar 

  26. Farhi, E., Gamarnik, D., Gutmann, S.: The quantum approximate optimization algorithm needs to see the whole graph: a typical case. arXiv:2004.09002 (2020)

  27. Farhi, E., Gamarnik, D., Gutmann, S.: The quantum approximate optimization algorithm needs to see the whole graph: worst case examples. arXiv:2005.08747 (2020)

  28. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)

  29. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. arXiv:1412.6062 (2015)

  30. Fruhwirth, R.: Application of Kalman filtering to track and vertex fitting. Nucl. Instrum. Meth. A 262, 444–450 (1987). https://doi.org/10.1016/0168-9002(87)90887-4

    Article  Google Scholar 

  31. Funcke, L., et al.: Studying quantum algorithms for particle track reconstruction in the LUXE experiment. J. Phys: Conf. Ser. 2438(1), 012127 (2023). https://doi.org/10.1088/1742-6596/2438/1/012127

    Article  MathSciNet  Google Scholar 

  32. Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12(2) (2019). https://doi.org/10.3390/a12020034

  33. Hastings, M.B.: Classical and quantum bounded depth approximation algorithms. arXiv:1905.07047 (2019)

  34. Béjar Alonso, I., et al. (Eds.): High-Luminosity Large Hadron Collider (HL-LHC): Technical design report. CERN Yellow Reports: Monographs, CERN, Geneva (2020). https://doi.org/10.23731/CYRM-2020-0010, https://cds.cern.ch/record/2749422

  35. Ju, X., et al.: Graph neural networks for particle reconstruction in high energy physics detectors. In: 33rd Annual Conference on Neural Information Processing Systems (2020)

    Google Scholar 

  36. Kraft, D.: A software package for sequential quadratic programming. Tech. Rep. DFVLR-FB, 88–28, DLR German Aerospace Center - Institute for Flight Mechanics, Koln, Germany (1988)

    Google Scholar 

  37. Lazar, A., et al.: Accelerating the Inference of the Exa. TrkX Pipeline. J. Phys: Conf. Ser. 2438(1), 012008 (2023). https://doi.org/10.1088/1742-6596/2438/1/012008

    Article  Google Scholar 

  38. Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2, 023074 (2020). https://doi.org/10.1103/PhysRevResearch.2.023074

    Article  Google Scholar 

  39. Linder, L.: Using a quantum annealer for particle tracking at LHC, Master Thesis at EPFL (2019)

    Google Scholar 

  40. Nicotra, D., et al.: A quantum algorithm for track reconstruction in the LHCb vertex detector (2023)

    Google Scholar 

  41. Pellow-Jarman, A., McFarthing, S., Sinayskiy, I., Pillay, A., Petruccione, F.: QAOA Performance in noisy devices: the effect of classical optimizers and ansatz depth. arXiv:2307.10149 (2023)

  42. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  43. Saito, M., et al.: Quantum annealing algorithms for track pattern recognition. EPJ Web Conf. 245, 10006 (2020). https://doi.org/10.1051/epjconf/202024510006

    Article  Google Scholar 

  44. Schwägerl, T., et al.: Particle track reconstruction with noisy intermediate-scale quantum computers. arXiv:2303.13249 (2023)

  45. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020). https://doi.org/10.1103/PhysRevX.10.021067

    Article  Google Scholar 

  46. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  Google Scholar 

  47. Zlokapa, A., et al.: Charged particle tracking with quantum annealing-inspired optimization. Q. Mach. Intell. 3, 27 (2021). https://doi.org/10.1007/s42484-021-00054-w

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Federico Meloni and David Spataro for discussions regarding the quantum tracking and Andreas Salzburger for his suggestion on the TrackML dataset. The author would also like to thank Ziwei Cui and Lei Li from Origin Quantum (Benyuan) for various feedback. The author is supported by NSFC under contract No. 12075060. This work is benefited by the libraries and quantum computing resources provided by Origin Quantum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Okawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okawa, H. (2024). Charged Particle Reconstruction for Future High Energy Colliders with Quantum Approximate Optimization Algorithm. In: Cruz, C., Zhang, Y., Gao, W. (eds) Intelligent Computers, Algorithms, and Applications. IC 2023. Communications in Computer and Information Science, vol 2036. Springer, Singapore. https://doi.org/10.1007/978-981-97-0065-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0065-3_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0064-6

  • Online ISBN: 978-981-97-0065-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics