Skip to main content

Recent Advances in Modeling Gas-Particle Flows

  • Living reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 311 Accesses

Abstract

This chapter is concerned with the mathematical modeling of dense fluidized suspensions and focuses on the so-called Eulerian or multifluid approach. It introduces newcomers to some of the techniques adopted to model fluidized beds and to the challenges and long-standing problems that these techniques present. After introducing the principal approaches for modeling fluid-solid systems, we focus on the multifluid, overviewing the main averaging techniques that consent to describe granular media as continua. We then derive the Eulerian equations of motion for fluidized powders of a finite number of monodisperse particle classes, employing volume averages. We present the closure problem and overview constitutive relations for modeling the granular stress and the interaction forces between the phases. To conclude, we introduce the population balance modeling approach, which permits handling suspensions of particles continuously distributed over the size and any other property of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford Science Publications, New York, 1990)

    MATH  Google Scholar 

  • T.B. Anderson, R. Jackson, A fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)

    Article  Google Scholar 

  • H. Arastoopour, C.H. Wang, S.A. Weil, Particle-particle interaction force in a dilute gas-solid system. Chem. Eng. Sci. 37, 1379–1386 (1982)

    Article  Google Scholar 

  • R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975)

    MATH  Google Scholar 

  • A.B. Basset, Treatise on Hydrodynamics (Deighton Bell, London, 1888)

    MATH  Google Scholar 

  • R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, New York, 1960)

    Google Scholar 

  • N.V. Brilliantov, T. Poschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004)

    Book  MATH  Google Scholar 

  • Y.A. Buyevich, Statistical hydrodynamics of disperse systems. Part 1. Physical background and general equations. J. Fluid Mech. 49, 489–507 (1971)

    Article  MATH  Google Scholar 

  • S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1970)

    MATH  Google Scholar 

  • P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  • N.G. Deen, E.A.J.F. Peters, J.T. Padding, J.A.M. Kuipers, Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows. Chem. Eng. Sci. 116, 710–724 (2014)

    Article  Google Scholar 

  • R. Di Felice, The voidage function for fluid-particle interaction systems. Int. J. Multiphase Flow 20, 153–159 (1994)

    Article  MATH  Google Scholar 

  • A. Di Renzo, F. Cello, F.P. Di Maio, Simulation of the layer inversion phenomenon in binary liquid-fluidized beds by DEM-CFD with a drag law for polydisperse systems. Chem. Eng. Sci. 66, 2945–2958 (2011)

    Article  Google Scholar 

  • D.A. Drew, Averaged field equations for two-phase media. Stud. Appl. Math. 50, 133–166 (1971)

    Article  MATH  Google Scholar 

  • D.A. Drew, Mathematical modelling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  Google Scholar 

  • D.A. Drew, R.T. Lahey, Analytical modelling of multiphase flow, in Particulate Two-Phase Flow (Butterworth-Heinemann, Boston, 1993)

    Google Scholar 

  • D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Applied Mathematical Sciences (Springer, New York, 1998)

    MATH  Google Scholar 

  • D.A. Drew, L.A. Segel, Averaged equations for two-phase flows. Stud. Appl. Math. 50, 205–231 (1971)

    Article  MATH  Google Scholar 

  • H. Enwald, E. Peirano, A.E. Almstedt, Eulerian two-phase flow theory applied to fluidization. Int. J. Multiphase Flow 22, 21–66 (1996)

    Article  MATH  Google Scholar 

  • S. Ergun, A.A. Orning, Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. 41, 1179–1184 (1949)

    Article  Google Scholar 

  • L.S. Fan, C. Zhu, Principles of Gas-Solid Flows (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  • D. Gera, M. Syamlal, T.J. O’Brien, Hydrodynamics of particle segregation in fluidized beds. Int. J. Multiphase Flow 30, 419–428 (2004)

    Article  MATH  Google Scholar 

  • D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, London, 1994)

    MATH  Google Scholar 

  • D. Gidaspow, B. Ettehadieh, Fluidization in two-dimensional beds with a jet. Part II: Hydrodynamic modeling. Ind. Eng. Chem. Fundam. 22, 193–201 (1983)

    Article  Google Scholar 

  • D. Gidaspow, M. Syamlal, Y.C. Seo, Hydrodynamics of fluidization of single and binary particles: Supercomputer modeling, in Proceedings of the 5th International Conference on Fluidization, Elsinore, 1985

    Google Scholar 

  • D. Gidaspow, M. Syamlal, Y.C. Seo, Hydrodynamics of fluidization: Supercomputer generated vs. experimental bubbles. J. Powder Bulk Solids Technol. 10, 19–23 (1986)

    Google Scholar 

  • D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds. Kinetic theory approach. In Proceedings of the 7th International Conference on Fluidization, Brisbane, 1992

    Google Scholar 

  • Y. He, T. Wang, N. Deen, A.M. van Sint, J.A.M. Kuipers, D. Wen, Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed. Particuology 10, 428–437 (2012)

    Article  Google Scholar 

  • E.J. Hinch, An averaged equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695–720 (1977)

    Article  MATH  Google Scholar 

  • B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, W.P.M. van Swaaij, Discrete particle simulation of a two-dimensional gas-fluidized bed: A hard sphere approach. Chem. Eng. Sci. 51, 99–118 (1996)

    Article  Google Scholar 

  • H. Iddir, H. Arastoopour, Modeling of multitype particle flow using the kinetic theory approach. AICHE J. 51, 1620–1632 (2005)

    Article  Google Scholar 

  • R. Jackson, Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Eng. Sci. 52, 2457–2469 (1997)

    Article  Google Scholar 

  • R. Jackson, Erratum. Chem. Eng. Sci. 53, 1955 (1998)

    Article  Google Scholar 

  • R. Jackson, The Dynamics of Fluidized Particles, Cambridge Monographs on Mechanics (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  • J.T. Jenkins, S.B. Savage, A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    Article  MATH  Google Scholar 

  • K.D. Kafui, C. Thornton, M.J. Adams, Discrete particle-continuum fluid modelling of gas-solid fluidised beds. Chem. Eng. Sci. 57, 2395–2410 (2002)

    Article  Google Scholar 

  • J.L. Lebowitz, Exact solution of generalised Percus-Yevick equation for a mixture of hard spheres. Phys. Rev. 133, 895–899 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Leva, Fluidization (McGraw-Hill, New York, 1959)

    Google Scholar 

  • H. Lu, S. Wang, Y. Zhao, L. Yang, D. Gidaspow, J. Ding, Prediction of particle motion in a two-dimensional bubbling fluidized bed using hard-sphere model. Chem. Eng. Sci. 60, 3217–3231 (2005)

    Article  Google Scholar 

  • C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223–256 (1984)

    Article  MATH  Google Scholar 

  • D.L. Marchisio, R.O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  • M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  • L. Mazzei, P. Lettieri, A drag force closure for uniformly-dispersed fluidized suspensions. Chem. Eng. Sci. 62, 6129–6142 (2007)

    Article  Google Scholar 

  • K. Nakamura, C.E. Capes. Vertical pneumatic conveying of binary particle mixtures, in Fluidization Technology, ed. by D.L. Keairns (Hemisphere Publishing Corporation, Washington, DC, 1976), pp. 159–184

    Google Scholar 

  • R.I. Nigmatulin, Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J. Multiphase Flow 5, 353–385 (1979)

    Article  MATH  Google Scholar 

  • J. Ouyang, J. Li, Particle-motion-resolved discrete model for simulating gas-solid fluidization. Chem. Eng. Sci. 54, 2077–2083 (1999)

    Article  Google Scholar 

  • O. Owoyemi, L. Mazzei, P. Lettieri, CFD modeling of binary-fluidized suspensions and investigation of role of particle-particle drag on mixing and segregation. AICHE J. 53, 1924–1940 (2007)

    Article  Google Scholar 

  • T.W. Pan, D.D. Joseph, R. Bai, R. Glowinski, V. Sarin, Fluidization of 1204 spheres: Simulation and experiments. J. Fluid Mech. 451, 169–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • J.K. Pandit, X.S. Wang, M.J. Rhodes, Study of Geldart’s Group A behaviour using the discrete element method simulation. Powder Technol. 160, 7–14 (2005)

    Article  Google Scholar 

  • J.W. Pritchett, T.R. Blake, S.K. Garg, A numerical model of gas fluidized beds. AIChe. Symp. Ser. 176, 134–148 (1978)

    Google Scholar 

  • D. Ramkrishna, Population Balances (Academic Press, London, 2000)

    Google Scholar 

  • J.F. Richardson, W.N. Zaki, Sedimentation and fluidization: Part I. Trans. Inst. Chem. Eng. 32, 35–53 (1954)

    Google Scholar 

  • K. Sankaranarayanan, X. Shan, I.G. Kevrekidis, S. Sundaresan, Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. J. Fluid Mech. 452, 61–96 (2002)

    Article  MATH  Google Scholar 

  • D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow. J. Diff. Eq. 66, 19–50 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Schiller, Z. Naumann, A drag coefficient correlation. Z. Ver. Deutsch. Ing. 77, 318–320 (1935)

    Google Scholar 

  • S.L. Soo, Fluid Dynamics of Multiphase Systems (Blaisdell Publishing Company, Waltham, 1967)

    MATH  Google Scholar 

  • M. Syamlal, The Particle-Particle Drag Term in a Multiparticle Model of Fluidization (National Technical Information Service, DOE/MC/21353–2373, NTIS/DE87006500, Springfield, 1987)

    Google Scholar 

  • M. Syamlal, W.A. Rogers, T.J. O’Brien, MFIX Documentation and Theory Guide (DOE/METC94/1004, NTIS/DE94000087, 1993). Electronically available from: http://www.mfix.org

  • Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79–87 (1993)

    Article  Google Scholar 

  • J. Wang, M.A. van der Hoef, J.A.M. Kuipers, Particle granular temperature of Geldart A, A/B and B particles in dense gas-fluidized beds. Chem. Eng. Sci. 97, 264–271 (2013)

    Article  Google Scholar 

  • C.Y. Wen, Y.H. Yu, Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62, 100–111 (1966)

    Google Scholar 

  • S. Whitaker, Advances in the theory of fluid motion in porous media. Ind. Eng. Chem. 61, 14–28 (1969)

    Article  Google Scholar 

  • B.H. Xu, A.B. Yu, Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete and particle method with computational fluid dynamics. Chem. Eng. Sci. 52, 2785–2809 (1997)

    Article  Google Scholar 

  • M. Ye, M.A. van der Hoef, J.A.M. Kuipers, The effects of particle and gas properties on the fluidization of Geldart A particles. Chem. Eng. Sci. 60, 4567–4580 (2005)

    Article  Google Scholar 

  • D.Z. Zhang, A. Prosperetti, Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185–219 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Discrete particle simulation of particulate systems: A review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

    Article  Google Scholar 

  • N. Zuber, On dispersed two-phase flow in the laminar flow regime. Chem. Eng. Sci. 19, 897–903 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mazzei .

Editor information

Editors and Affiliations

Appendix

Appendix

Fluid-Phase Volume Average of Point Variable Spatial Derivatives

We intend to derive an expression for the fluid-phase volume average of point variable spatial derivatives; to this end, we start by considering the derivative:

$$ {\partial}_a\left[\varepsilon \left(\boldsymbol{x}, t\right){\left\langle \zeta \right\rangle}_e\left(\boldsymbol{x}, t\right)\right] $$
(118)

Now, using the definition of fluid-phase volume average given in Eq. 17 and the derivation chain rule, we write the quantity above as:

$$ \begin{array}{l}{\partial}_{x_a}{\int}_{\Lambda_e}\zeta \left(\boldsymbol{z}, t\right)\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right) d\boldsymbol{z}={\int}_{\Lambda_e}\zeta \left(\boldsymbol{z}, t\right){\partial}_{x_a}\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right) d\boldsymbol{z}=-{\int}_{\Lambda_e}\zeta \left(\boldsymbol{z}, t\right){\partial}_{z_a}\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right) d\boldsymbol{z}\\ {}\\ {}\operatorname{}\operatorname{}={\int}_{\Lambda_e}\left[{\partial}_{z_a}\zeta \left(\boldsymbol{z}, t\right)\right]\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right) d\boldsymbol{z}-{\int}_{\Lambda_e}{\partial}_{z_a}\left[\zeta \left(\boldsymbol{z}, t\right)\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right)\right] d\boldsymbol{z}\end{array} $$
(119)

For the first integral, we can write:

$$ {\int}_{\Lambda_e}\left[{\partial}_{z_a}\zeta \left(\boldsymbol{z}, t\right)\right]\;\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right) d\boldsymbol{z}=\varepsilon \left(\boldsymbol{x}, t\right){\left\langle {\partial}_a\zeta \right\rangle}_e\left(\boldsymbol{x}, t\right) $$
(120)

For the second, the Gauss theorem allows writing:

(121)

where ∂Λ x is the surface bounding the domain containing the mixture and n a (x, t) is the ath component of the unit vector normal to ∂Λ x pointing away from the mixture. If the shortest distance from the generic point x ∈ ∂Λ x is considerably larger than the weighting function radius, the first term of the right-hand side of the equation above is much smaller than the second. Neglecting it, we obtain Eq. 25.

Fluid-Phase Volume Average of Point Variable Time Derivatives

Similarly, to derive an expression for the fluid-phase volume average of point variable time derivatives, we start by considering the derivative:

$$ {\partial}_t\left[\varepsilon \left(\boldsymbol{x}, t\right){\left\langle \xi \right\rangle}_e\left(\boldsymbol{x}, t\right)\right] $$
(122)

Using the definition of fluid-phase volume average given in Eq. 17 and then applying the Leibnitz theorem allows writing this as:

(123)

The integral on ∂Λ x can be neglected for the same reasons given in Appendix “Fluid-Phase Volume Average of Point Variable Spatial Derivatives.” Now, using the definition of fluid-phase volume average given in Eq. 17, we have:

$$ {\int}_{\Lambda_e}\left[{\partial}_t\zeta \left(\boldsymbol{z}, t\right)\right]\psi \left(\left|\boldsymbol{x}-\boldsymbol{z}\right|\right) d\boldsymbol{z}=\varepsilon \left(\boldsymbol{x}, t\right){\left\langle {\partial}_t\zeta \right\rangle}_e\left(\boldsymbol{x}, t\right) $$
(124)

Obtaining Eq. 26 is then immediate. Note that if Λ x is time independent, u(z, t) = 0 on ∂Λ x , and therefore the last integral on the right-hand size of Eq. 123 rigorously vanishes.

Particle-Phase Volume Average of Point Variable Time Derivatives

We intend to derive an expression for the particle-phase volume average of point variable time derivatives; in this case, we consider the derivative:

$$ {\partial}_t\left[{n}_r\left(\boldsymbol{x}, t\right){\left\langle \zeta \right\rangle}_p^r\left(\boldsymbol{x}, t\right)\right] $$
(125)

Now, employing the definition of particle-phase volume average given in Eq. 21, we can express the partial derivative above as:

(126)

From the definition of particle-phase volume average, it is:

(127)

Applying the derivation chain rule yields:

(128)

having used again the partial derivatives commutative property and the definition of particle-phase average. Replacing these last two results in Eq. 126 yields Eq. 39.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Mazzei, L. (2016). Recent Advances in Modeling Gas-Particle Flows. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics