Skip to main content

EELS and Raman: Nonbond Interactions

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2143 Accesses

Abstract

Raman and EELS are able to discriminate vibrations due to non-bond interaction at terahertz frequencies. Transition of vibration frequencies at the 101 meV indicates the conversion of dipole formation due to O1−, O2−, and the weakened interaction by H-bond-like formation. The events of O−1 formation, O−2 sp-hybrid bonding, non-bonding lone pair, antibonding dipole, and the H-like bonding are essential in the electronic process of oxidation, and in the reactions involving other electronegative additives as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Miyake, N. Satomi, S. Sasaki, Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 89(3), 031925 (2006)

    Article  ADS  Google Scholar 

  2. P.M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen, Nanotubes in a flash—ignition and reconstruction. Science 296(5568), 705 (2002)

    Article  Google Scholar 

  3. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  ADS  Google Scholar 

  4. E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102(23), 235502 (2009)

    Article  ADS  Google Scholar 

  5. Z.C. Tu, Z. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65(23), 233407 (2002)

    Article  ADS  Google Scholar 

  6. K.K. Nanda, Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Appl. Phys. Lett. 87(2), 021909 (2005)

    Article  ADS  Google Scholar 

  7. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics. Science 323(5922), 1705–1708 (2009)

    Article  ADS  Google Scholar 

  8. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56(4), 313–316 (2007)

    Article  Google Scholar 

  9. M.X. Gu, C.Q. Sun, Z. Chen, T.C.A. Yeung, S. Li, C.M. Tan, V. Nosik, Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures. Phys Rev B 75(12), 125403 (2007)

    Article  ADS  Google Scholar 

  10. F. Scarpa, S. Adhikari, R. Chowdhury, The transverse elasticity of bilayer graphene. Phys. Lett. A 374(19–20), 2053–2057 (2010)

    Article  ADS  Google Scholar 

  11. H. Hakkinen, R.N. Barnett, A.G. Scherbakov, U. Landman, Nanowire gold chains: formation mechanisms and conductance. J. Phys. Chem. B 104(39), 9063–9066 (2000)

    Article  Google Scholar 

  12. R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM. Micron 35(6), 399–409 (2004)

    Article  Google Scholar 

  13. F. Scarpa, S. Adhikari, A.J. Gil, C. Remillat, The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21(12), 125702 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). EELS and Raman: Nonbond Interactions. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_6

Download citation

Publish with us

Policies and ethics