Skip to main content

Fresnel Zone Plate Antenna

Handbook of Antenna Technologies
  • 415 Accesses

Abstract

The classic Fresnel zone plate has the advantage of being a flat, two-dimensional structure with a small thickness, light and easy to manufacture compared to the bulky refraction lens. In some cases, however, the zoned plate can be fabricated as a three-dimensional curvilinear assembly standing alone or conformal to some man-made or natural formation.

This chapter is devoted to aperture antennas based on flat or curvilinear Fresnel zone plate lenses or reflectors. It is written as a self-sufficient text, which brings together most of the standard knowledge and recent research on the Fresnel zone plate antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baggen LC, Herben M (1993) Design procedure for a Fresnel-zone plate antenna. Int J Infrared Millim Waves 6:1341–1352

    Article  Google Scholar 

  • Baggen LC, Jeronimus CJ, Herben M (1993) The scan performance of the Fresnel zone plate antenna: a comparison with the parabolic reflector antenna. Microw Opt Technol Lett 13:769–774 (Correction in vol 14, p 138)

    Article  Google Scholar 

  • Black D, Wiltse J (1987) Millimeter-wave characteristics of phase-correcting Fresnel zone plates. IEEE Trans Microw Theory Technol 12:1122–1128

    Article  Google Scholar 

  • Bruce E (1939) Directive radio system. US Patent 2.169.553

    Google Scholar 

  • Bruce E (1946) Directive radio system. US Patent 2.412.202

    Google Scholar 

  • Burnside WD, Burgener KW (1983) High frequency scattering by a thin lossless dielectric slab. IEEE Trans Antennas Propag 1:104–110

    Article  Google Scholar 

  • Clavier A, Darbord R (1936) Directional radio transmission system. US Patent 2.043.347

    Google Scholar 

  • Cohn M, Wentworth F, Sobel F, Wiltse J (1962) Radiometer instrumentation for the 1 to 2 millimeter wavelength region. Proc IRE 1962 Nat Aerospace Electronics Conf: 537–541

    Google Scholar 

  • Cotton J, Sobel F, Cohn M, Wiltse J (1962) Millimeter wave research. Electronics Communications Inc., Dayton: 512–518

    Google Scholar 

  • Delmas J-J et al (1993) TDF antenna for multi-satellite reception using 3D Fresnel principle and multilayer structure. In: IEEE Int Antenna Propagat Symp Digest, vol 2, Ann Arbor: 1647–1650

    Google Scholar 

  • Dey K, Khastgir P (1973a) Comparative focusing properties of spherical and plane microwave zone plate antennas. Int J Electron 35:497–506

    Article  Google Scholar 

  • Dey K, Khastgir P (1973b) A study of the characteristics of a microwave spherical zone plate antenna. Int J Electron 35:97–103

    Article  Google Scholar 

  • Dey K, Khastgir P (1973) A theoretical study of the axial field amplitude of microwave paraboloidal, spherical and plane zone plate antennas. J Inst Electron Telecommun Eng: 697–700

    Google Scholar 

  • Fresnel AJ (1866) Calcul de l’intensité de la lumiére au centre de l’ombre d’un écran. Euvres Complét 1:365–372

    Google Scholar 

  • Fan Y, Ooi B-L, Hristov HD, Leong M-S (2010) Compound diffractive lens consisting of Fresnel zone plate and frequency selective screen. IEEE Trans Antennas Propag 6:1842–1847

    Google Scholar 

  • Gagnon N, Petosa A, McNamara DA (2010) Thin microwave quasi-transparent phase-shifting surface (PSS). IEEE Trans Antennas Propag 4:1193–1201

    Article  Google Scholar 

  • Gagnon N, Petosa A, McNamara DA (2012) Printed hybrid lens antennas. IEEE Trans Antennas Propag 5:2514–2518

    Article  Google Scholar 

  • Gagnon N, Petosa A, McNamara DA (2013) Research and development on phase-shifting surfaces (PSSs). IEEE Antennas Propag Mag 2:29–48

    Article  Google Scholar 

  • Garrett J, Wiltse JC (1991) Fresnel zone plate antennas at millimeter wavelengths. Int J Infrared Millim Waves 12:195–220

    Article  Google Scholar 

  • Goldsmith PF, Moore EL (1984) Gaussian optics lens antennas. Microw J 7:153

    Google Scholar 

  • Goldsmith PF (1998) Quasioptical systems: gaussian beam quasioptical propagation. IEEE Press, Piscataway

    Book  Google Scholar 

  • Guo YJ et al. (1991) Design of high-efficiency Fresnel zone plate antennas. IEEE Antennas Propag Symp 182–185, London

    Google Scholar 

  • Guo YJ, Barton S (1992) A high-efficiency quarter-wave zone plate reflector. IEEE Microw Guided Wave Lett 12:470–471

    Article  Google Scholar 

  • Guo YJ, Barton S (1993a) Fresnel zone plate reflector incorporating rings. IEEE Microw Guided Wave Lett 3:417–419

    Article  Google Scholar 

  • Guo YJ, Barton S (1993b) On the subzone phase correction of Fresnel zone plate antennas. Microw Opt Technol Lett 6:840–843

    Article  Google Scholar 

  • Guo YJ et al (1994) Multilayer offset Fresnel zone plate reflector. IEEE Microw Guided Wave Lett 6:196–198

    Article  Google Scholar 

  • Guo YJ, Barton S (1995) Phase correcting zonal reflector incorporating rings. IEEE Trans Antennas Propag 43:350–355

    Article  Google Scholar 

  • Guo YJ, Barton S (2002) Fresnel zone antennas. Kluwer, Norwell

    Book  Google Scholar 

  • Gouker MA, Smith GS (1992) A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate. IEEE Trans Microw Theory Tech 5:968–977

    Article  Google Scholar 

  • Hajian M, de Vree GA, Ligthart LP (2003) Electromagnetic analysis of beam-scanning antenna at millimeter-wave band based on photoconductivity using Fresnel–zone-plate technique. IEEE Antennas Propag Mag 5:13–25

    Article  Google Scholar 

  • Hristov HD, Herben M (1995) Millimeter-wave Fresnel zone plate lens and antenna. IEEE Trans Microw Theory Tech 43:2770–2785

    Article  Google Scholar 

  • Hristov HD (1996) The multi-dielectric Fresnel zone plate antenna-a new candidate for DBS reception. IEEE Int Antennas Propag Symp, Baltimore 1:746–749

    Google Scholar 

  • Hristov HD (1999) Variety of cylindrical Fresnel zone plate antennas. IEEE Int Antennas Propag Symp Digest 2:750–753

    Google Scholar 

  • Hristov HD (2000) Fresnel zones in wireless links, zone plate lenses and antennas. Artech House, Boston-London

    Google Scholar 

  • Hristov HD, Feick R (2001) The dome-like Fresnel-zone antennas (or how to convert a dome into antenna). IEEE USNC/URSI Radio Science Meeting Digest, Boston: 46

    Google Scholar 

  • Hristov HD et al (2005) Focusing characteristics of curvilinear half-open Fresnel zone plate lenses: plane wave illumination. IEEE Trans Antennas Propag 6:1912–1919

    Article  Google Scholar 

  • Hristov HD (2011) Terahertz harmonic operation of microwave Fresnel zone plate and antenna: frequency filtering and space resolution properties. Int J Antennas Propag 12:1. doi:10.1155/2011/541734, 8 pages

    Article  Google Scholar 

  • Hristov HD et al (2012) The grooved-dielectric Fresnel zone plate: an effective terahertz lens and antenna. Microw Opt Technol Lett 6:1943–1948

    MathSciNet  Google Scholar 

  • Hristov HD, Rodriguez JM (2012) Design equation for Fresnel zone plate lens. IEEE Microw Wirel Compon Lett 11:574–576

    Article  Google Scholar 

  • Hristov HD (2013) Design equation for multidielectric Fresnel zone plate lens. IEEE Microw Wirel Compon Lett 11:574–576

    Google Scholar 

  • Huder B, Menzel W (1988) Flat printed reflector antenna for mm-wave applications. Electron Lett 24:318–319

    Article  Google Scholar 

  • Jackson JD (1975) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  • Ji Y, Fujita MA (1996) A cylindrical Fresnel zone antenna. IEEE Trans Antennas Propagat: 1301–1303

    Google Scholar 

  • Kamburov LP, Hristov HD, Urumov JR, Feick R (2005) Curvilinear Fresnel-zone lens antenna: vector radiation theory. Int J Infrared MilimWave Theory 11:1593–1611

    Article  Google Scholar 

  • King M, Rodgers J, Sobel F, Wentworth F, Wiltse J (1960) Quasi-optical components and surface waveguides for 100- to 300-Gc frequency range. Electronic Communications, Inc. Report No. 2 on Contract AF19 (604)-5475

    Google Scholar 

  • Khastgir P, Bhomwmick KN (1978) Analysis of the off-axis defocus of microwave zone plate. Indian J Pure Appl Phys 16:96–101

    Google Scholar 

  • Khastgir P et al (1973) Microwave paraboloidal, spherical and plane zone plate antennas: a comparative study. Indian J Radio Space Phys 1:47–50

    Google Scholar 

  • Lazarus M, Silvertown A, Novak S (1979) Fresnel–zone plate aids low-cost Doppler design. Microwaves 11:78–80

    Google Scholar 

  • Lee Y-S (2009) Principles of terahertz science and technology. Springer Science, LLC, New York

    Google Scholar 

  • Leiten L, Herben M (1992) Vectorial far-field of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna. Microw Opt Technol Lett 5:49–56

    Article  Google Scholar 

  • Maddaus AI (1948) Fresnel zone plate antenna. Naval Research Lab, Washington, DC, Report R-3293

    Google Scholar 

  • Mawzones Ltd (1992) Leaflet. Herts

    Google Scholar 

  • Minin I, Minin O (1988) Diffraction lenses on parabolic surfaces. Comput Opt 3:21–29

    Google Scholar 

  • Minin I, Minin O (1989) Invariant properties of elements of diffraction quasioptics. Comput Opt 6:89–97

    Google Scholar 

  • Minin I, Minin O (1990) Paraboloidal zone plates: an experimental study. Comput Opt 1:5–9

    Google Scholar 

  • Minin I, Minin O (2004) Diffraction optics of millimeter waves. IOP Institute of Physics, London

    Book  Google Scholar 

  • Minin I, Minin O (2005) Three dimensional Fresnel antennas. In: Tazor A (ed) Advances on antennas reflectors and beam control. Research Signpost, Kerala, pp 115–148

    Google Scholar 

  • Minin I, Minin O (2008a) Basic principles of Fresnel antenna arrays. Springer Academic, Berlin

    MATH  Google Scholar 

  • Minin I, Minin O (2008b) Development and application of 3D diffractive antennas. TELE-Satell Broadband 5:14–16. www.TELE-satellite.com

    Google Scholar 

  • Minin I et al. (2005) Flat and conformal zone plate antenna with new capabilities. Proc Int Conf Apl Electromagnetics, Dubrovnik, pp 405−408

    Google Scholar 

  • Mottier P, Valette S (1981) Integrated Fresnel lens on thermally oxidized silicon substrate. Appl Optics 20:1630–1634

    Article  Google Scholar 

  • Myers OE (1951) Studies of transmission zone plates. Am J Phys 19:359–365

    Article  Google Scholar 

  • Norden Systems, Inc (1984) Millimeter-wave radio series 380. Data sheet

    Google Scholar 

  • Ojeda-Castañeda J, Gómes-Reino C (eds) (1996) Selected papers on zone plates, vol 128, SPIE milestone series. Bellingham, Washington, DC

    Google Scholar 

  • Orazbaev B, Beruete M, Pacheco-Pena V, Crespo G, Teniente J Navarro-Cia M (2015) Wood zone plate fishnet metalens. EDP Sciences, EPJ Appl. Metamat. 2, 8

    Google Scholar 

  • Petosa A, Ittipiboon A (2003) Design and performance of a perforated dielectric Fresnel lens. IEE Proc Microw Antennas Propag 10:309–314

    Article  Google Scholar 

  • Petosa A et al (2006) Investigation on arrays of perforated dielectric Fresnel lenses. IEE Proc Microw Antennas Propag 3:270–276

    Article  Google Scholar 

  • Reid DR, Smith G (2006) A full electromagnetic analysis for the Soret and folded zone plate antennas. IEEE Trans Antennas Propag 12:3638–3646

    Article  Google Scholar 

  • Reid DR, Smith G (2007) Full electromagnetic analysis of grooved-dielectric zone plate antennas for microwave and millimeter-wave applications. IEEE Trans Antennas Propag 55:2138–2146

    Article  Google Scholar 

  • Rodriguez JM et al. (2011) Fresnel zone plate and ordinary lens antennas: comparative study at microwave and terahertz frequencies. In: 41st EU Microwave Conf (EUMC), pp 894–987

    Google Scholar 

  • Sanyal GS, Singh M (1968) Fresnel zone plate antenna. J Inst Telecommun Eng 14:265–281, India

    Google Scholar 

  • Sazonov D (1999) Computer-aided design of holographic antennas. IEEE Int Antennas and Propagat Symp, Orlando, Fl, Symp Digest, 2:738–741

    Google Scholar 

  • Silver S (1984) Microwave antenna theory and design. Peter Peregrines, London

    Book  Google Scholar 

  • Shuter W et al (1984) A metal plate Fresnel zone lens for 4 GHz satellite TV reception. IEEE Trans Antennas Propag 3:306–307

    Article  Google Scholar 

  • Sluijter J et al (1995) Experimental validation of PO/UTD applied to Fresnel zone plate antenna. Microw Opt Technol Lett 2:111–113

    Article  Google Scholar 

  • Sobel F, Wentworth FL, Wiltse JC (1961) Quasi-optical surface waveguides and other components for the 100- to 300- Gc Region. IRE Trans Microw Theory Tech MTT-9:512–518

    Google Scholar 

  • Soret J (1875) Ueber die durch Kreisgitter erzeugten Diffractionsphunomene. Annalen der Physik und Chemie 156:99–113

    Article  Google Scholar 

  • Sun J-A, Cai A (1991) Archaic focusing of Fresnel zone plates. J Opt Soc Am 1:33–35

    Article  Google Scholar 

  • Suhara T, Kobayashi K, Nishihara H, Koyama J (1982) Graded-index Fresnel lenses for integrated optics. Appl Opt 21:1966–1971

    Article  Google Scholar 

  • Sussman M (1960) Elementary diffraction theory of zone plates. Am J Physics: 394–398

    Google Scholar 

  • Thornton, Strozyk (1983) MCPR-An LPI wideband cable replacement radio. IN: Proc IEEE Southcon-83: 21/2-1–21/2-14, Atlanta

    Google Scholar 

  • Van Buskirk LF, Hendrix CE (1961) The zone plate as a radio frequency focusing element. IRE Trans Antennas Propag AP-9:319–320

    Article  Google Scholar 

  • Van Buskirk (1965) Zone p;ate radio transmission system. US Patent 3,189, 907, June 15.

    Google Scholar 

  • Van Houten JM, Herben MHAJ (1994) Analysis of phase correcting Fresnel-zone plate antenna with dielectric/transparent zones. J EM Waves Appl 8:847–858

    Google Scholar 

  • Walsby ED et al (2002) Multilevel silicon diffractive optics for terahertz waves. J Vac Sci Technol B 6:2780–2783

    Article  Google Scholar 

  • Wang S et al (2002) Characterization of T-ray binary lenses. Opt Lett 13:1183–1185

    Article  Google Scholar 

  • Webb JW (2003) New variable for Fresnel zone plate antennas. In: Proceedings of the 2003 Antenna Applications Symp, Allerton Park, Monticello

    Google Scholar 

  • Webb JW, Minin IV, Minin OV (2011) Variable reference phase in diffractive antennas: review, applications and new results. IEEE Antennas Propag Mag 2:78–94

    Google Scholar 

  • Wiltse JC (1985) The Fresnel zone-plate lens. Proc SPIE Symp: 41–47

    Google Scholar 

  • Wiltse J (1994) Millimeter-wave Fresnel zone plate antennas. (272–293) Chapter 11 in the RF and microwave handbook, millimeter and MW engineering for communications and radar (book), SPIE CR54. Bellingham: 272–293

    Google Scholar 

  • Wiltse J (1998) High efficiency, high gain Fresnel zone plate antennas. Proc SPIE 3375:286–290

    Article  Google Scholar 

  • Wiltse J (2004) Diffraction optics for terahertz waves. Proc SPIE 5411:127–135

    Article  Google Scholar 

  • Wiltse J (2012) Fresnel zone plates antennas at terahertz, millimeter-waves and microwave frequencies. Unpublished book

    Google Scholar 

  • Wood RW (1898) Phase-reversal zone plates and diffraction telescopes. Philos Mag 45:511–523

    Article  Google Scholar 

  • Wood RW (1934) Physical optics, 3rd edn. The MacMillan Co, New York

    Google Scholar 

  • Xu J, Chen ZN, Qing X (2013) 270-GHz LTCC-integrated high-gain cavity-backed Fresnel zone plate lens antenna. IEEE Trans Antennas Propag 4:1679–1687

    Article  Google Scholar 

  • Yamauchi S, Honma S, Honma T, Nacano H (1990) Focusing properties of Fresnel zone-plate and its applications to a helix radiating a circularly polarized. Electron Commun Jpn 9:107–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Hristov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Hristov, H.D. (2015). Fresnel Zone Plate Antenna. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Fresnel Zone Plate Antenna
    Published:
    18 April 2016

    DOI: https://doi.org/10.1007/978-981-4560-75-7_42-2

  2. Original

    Fresnel Zone Plate Antenna
    Published:
    26 August 2015

    DOI: https://doi.org/10.1007/978-981-4560-75-7_42-1