Skip to main content

Radiometer Antennas

  • Living reference work entry
  • First Online:
Handbook of Antenna Technologies
  • 1195 Accesses

Abstract

Microwave radiometry is concerned with purely passive sensing of naturally generated microwave radiation of thermal origin. Microwave radiometers are corresponding measuring devices typically designed and built as a very low-noise receiver followed by a signal recording unit. Usually, radiometers contain an antenna as the first reception component collecting the incoming radiation, and they measure radiation power expressed in an apparent temperature called brightness temperature. The observable brightness temperature of any object or surface depends on various chemical and physical quantities, whose concurrence is expressed by the objects’ emission (absorption), reflection, and transmission properties and its true temperature. Since the Earth has a temperature typically close to 300 K and the universe close to 3 K, a nearly arbitrary mixture of these two extreme temperatures can be expected. Consequently, our environment can show quite different brightness temperature values depending on the direction of actual observation.

On the one hand, radiometer measurements are carried out stationary with respect to the antenna pointing direction in order to observe time-dependent variations of the brightness temperature. On the other hand, the brightness temperature of a whole scene is scanned in order to acquire locally changing one- or two-dimensional profiles, while the latter ones are assembled as a two-dimensional image comparable to a conventional photograph. Depending on the specific application, various antenna types are considered, where usually hard requirements with respect to beam width, side-lobe level, scan capability, and losses have to be addressed (Transmission Lines). Radiometric measurements are performed for Earth or planetary observation in space (Space Antennas including Terahertz Antennas), from aircraft platforms on the Earth’s surface and the atmosphere, or on the ground, either sensing the environment or sensing the universe, the latter being performed in radio astronomy (Antennas in Radio Telescope Systems). Usually, the brightness temperature is rarely used as the physical quantity of interest. More often, it is transferred via adequate physical models to other secondary or third quantities for more direct use in the case of Earth observation (e.g., soil moisture, ocean salinity, rain rate, snow cover, etc.), being performed already since the 1950s of the last century. However, in the last decades, microwave radiometry is as well used in many safety- and security-related applications, for which often only sufficient temperature contrast between an object and its surrounding is required besides spatial resolution for detection and recognition purposes.

In this chapter relevant fundamentals of microwave radiometry are outlined for better understanding of antenna requirements, followed by an overview of typical types of radiometer antenna systems. Some existing antenna systems are discussed in order to illustrate the variability with respect to applications. A section on basic antenna quantities addresses key figures for practical design and verification and illustrates the results exemplarily for selected cases. Finally, a brief summary and an outlook on possible future implementations and other frequency ranges are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Appleby R, Wallace HB (2007) Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans Ant Propagat 55(11):2944–2956

    Article  Google Scholar 

  • Appleby R, Anderton RN, Jack JW (2004) The design of a real-time 94 GHz passive millimeter-wave imager for helicopter operations. Proceedings of SPIE security & defense symposium – passive MMW imaging technology VII, Orlando, vol 5619

    Google Scholar 

  • Barré HMJP, Duesmann B, Kerr YH (2008) SMOS: the mission and the system. IEEE Trans Geosci Remote Sens 46(3):587–593

    Article  Google Scholar 

  • Bor J, Lafond O, Merlet H, Le bars P, Himdi M (2014) Foam based Luneburg lens antenna at 60 GHz. Progr Electromagn Res Lett 44:1–7

    Article  Google Scholar 

  • Bosch-Lluis X (2011) On the design of microwave radiometers with digital beamforming and polarization synthesis for earth observation. PhD dissertation, Universitat Polytècnica de Catalunya, Barcelona

    Google Scholar 

  • Brown MA, Torres F, Corbella I, Colliander A (2008) SMOS calibration. IEEE Trans Geosci Remote Sens 46(3):646–658

    Article  Google Scholar 

  • Camps AJ (1996) Application of Interferometric radiometry to earth observation. PhD dissertation, Universitat Polytècnica de Catalunya, Barcelona

    Google Scholar 

  • Camps A, Skou N, Torres F, Corbella I, Duffo N, Vall-llossera M (2006) Considerations about antenna pattern measurements of 2-D aperture synthesis radiometers. IEEE Geosci Remote Sensing Lett 3(2):259–261

    Article  Google Scholar 

  • Christensen J, Carlström A, Ekström A, de Maagt P, Colliander A, Emrich A, Embretsén J (2007) GAS: the geostationary atmospheric sounder. In: International geoscience and remote sensing symposium, IGARSS, Barcelona, Spain, 2007

    Google Scholar 

  • Clark S, Lovberg J, Kolinko V, Martin C, McCoy J (2004) Pupil plane array based millimeter-wave imaging radiometer, final technical report, Trex Enterprises Corporation

    Google Scholar 

  • Dong J, Li Q (2010) Antenna array design in aperture synthesis radiometers. In: Mini I (ed) Microwave and millimeter wave technologies modern UWB antennas and equipment. InTech 2010. Available from http://www.intechopen.com/books/microwave-and-millimeter-wave-technologiesmodern uwb-antennas-and-equipment/antenna-array-design-in-aperture-synthesis-radiometers

  • ECMWF. http://old.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/

  • Entekhabi D et al (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • ESA Bulletin 137 (2009) European Space Agency, February 2009

    Google Scholar 

  • Felli M, Spencer RE (1989) Very long baseline interferometry. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Fisher JR (1996) Phased-array feeds for low-noise reflector antennas. National radio astronomy observatory, Green Bank, West Virginia, Electronics division internal report no. 307

    Google Scholar 

  • Fisher JR, Bradley RF (2000) Full-sampling focal plane arrays. In: Imaging at radio through submillimeter wavelengths, ASP conference proceedings, vol 217. Astronomical Society of the Pacific

    Google Scholar 

  • Font J, Camps A, Borges A, Martin-Neira M, Boutin J, Reul N, Kerr YH, Hahne A, Mecklenburg S (2010) SMOS: the challenging sea surface salinity measurement from space. Proc IEEE 98(5):649–665

    Article  Google Scholar 

  • Hall PJ (2006) The square kilometre array: an engineering perspective. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Hall L, Hansen H, Abbott D (2001) A microstrip-based Rotman lens for mm-wave sensing operations. In: Proceedings of SPIE passive millimeter wave imaging technology V, Orlando, vol 4373, pp 40–48.

    Google Scholar 

  • Harris FJ (1978) On the use of windows for harmonic analysis with the discrete fourier transform. Proc IEEE 66(1):51–83

    Article  Google Scholar 

  • Harvey AR, Appleby R (2003) Passive mm-wave imaging from UAVs using aperture synthesis. Aeronaut J 107(1068):87–97

    Google Scholar 

  • Heinz E, May T, Born D, Ziegler G, Peiselt K, Vyacheslav Z, Krause T, Krüger A, Schulz M, Bauer F, Meyer HG (2014) Progress in passive submillimeter-wave video imaging. In: Proceedings of SPIE defense security + sensing symposium – passive and active MMW imaging XVII, Baltimore, vol 9078

    Google Scholar 

  • Imaoka K, Kachi M, Kasahara M, Ito N, Nakagawa K, Oki T (2010) Instrument performance and calibration of AMSR-E and AMSR2. International archives of the photogrammetry, remote sensing and spatial information science, vol XXXVIII, part 8, Kyoto, 2010

    Google Scholar 

  • Janssen MA (1993) Atmospheric remote sensing by microwave radiometry. Wiley, New York

    Google Scholar 

  • JAXA. http://sharaku.eorc.jaxa.jp/AMSR/gcom/gcom.html

  • Jirousek M, Peichl M, Suess H (2010) A microwave imaging spectrometer for security applications. In: Proceedings of SPIE defence security + sensing symposium – passive millimeter-wave imaging technology XIII, Orlando, vol 7670, 2010

    Google Scholar 

  • Johansson JF (1995) Fundamental limits for focal-plane array efficiency. In: Multi-feed systems for radio telescopes, ASP conference series, vol 75

    Google Scholar 

  • Johnson RC, Jasik H, Crawford HB (1993) Antenna engineering handbook. McGraw-Hill, New York

    Google Scholar 

  • Kim W-G, Moon N-W, Chang Y-S, Lee M-K, Jung S-W, Choi J-H, Jung J-M, Kim Y-H (2011) System design of focal plane array based millimeter-wave imaging radiometer for concealed weapon detection. In: Proceedings of IGARSS, IEEE, Vancouver, 2011

    Google Scholar 

  • Kraus J, Marhefka R (2001) Antennas for all applications. McGraw-Hill, New York

    Google Scholar 

  • Le Vine DM (1990) The sensitivity of synthetic aperture radiometers for remote sensing applications from space. Radio Sci 25(4):441–453

    Article  Google Scholar 

  • Luukanen A, Kiuru T, Leivi MM, Rautiainen A, Varis J (2013) Passive three-color sub-millimeter-wave video camera. In: Proceedings of SPIE defence security + sensing symposium – passive and active MMW imaging XVI, Baltimore, vol 8715, 2013

    Google Scholar 

  • Martín-Neira M, LeVine DM, Kerr Y, Skou N, Peichl M, Camps A, Corbella I, Hallikainen M, Font J, Wu J, Mecklenburg S, Drusch M (2014) Microwave interferometric radiometry in remote sensing: an invited historical review. Radio Sci 49. doi:10.1002/2013RS005230

    Google Scholar 

  • Mätzler C (2006) Thermal microwave radiation: applications for remote sensing. The Institution of Engineering and Technology, London

    Book  Google Scholar 

  • National Academy of Sciences (2007) Assessment of millimeter-wave and terahertz technology for detection and identification of concealed explosives and weapons. Committee on Assessment of Security Technologies for Transportation, National Research Council, National Academies Press, Washington, DC

    Google Scholar 

  • Nielsen PH, Pontoppidan K, Heeboell J, Le Stradic B (1989) Design, manufacture and test of a pushbroom radiometer. In: 6th international conference on antennas and propagation, ICAP, Coventry, 89, vol 1, 1989

    Google Scholar 

  • Olver AD, Clarricoats PJB, Kishk AA, Shafai L (1994) Microwave horns and feeds, IEE electromagnetic waves series. Institution of Engineering and Technology, London

    Book  Google Scholar 

  • Orfanidis SJ (2008) Electromagnetic waves and antennas. Rutgers University, Piscataway. http://www.ece.rutgers.edu/&orfanidi/ewa/

  • Otoshi TY (1968) The effect of mismatched components on microwave noise-temperature calibrations. IEEE Trans Microwave Theor Techn 16(9):675–686

    Article  Google Scholar 

  • Padman R (1995) Optical fundamentals for array feeds. In: Multi-feed systems for radio telescopes, ASP conference series, vol 75

    Google Scholar 

  • Peichl M, Süß H, Süß M, Kern S (1998) Microwave imaging of the brightness temperature distribution of extended areas in the near and far field using two-dimensional aperture synthesis with high spatial resolution. Radio Sci 33(3):781–801

    Article  Google Scholar 

  • Peichl M, Dill S, Jirousek M, Süß H (2007) Microwave radiometry – imaging technology and applications. In: Review lecture, ITG conference on wave propagation in communication, microwave systems and navigation, WFMN 2007, Chemnitz

    Google Scholar 

  • Peichl M, Dill S, Rudolf D (2013) SUMIRAD – a low-cost fast millimeter-wave radiometric imaging system. In: Proceedings of SPIE defence security + sensing symposium – passive and active MMW imaging XVI, vol 8715

    Google Scholar 

  • Pozar DM (2005) Microwave engineering, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Rautiainen K, Kainulainen J, Auer T, Pihlflyckt J, Kettunen J, Hallikainen MT (2008) Helsinki University of technology L-band airborne synthetic aperture radiometer. IEEE Trans Geosci Remote Sens 46(3):717–726

    Article  Google Scholar 

  • Reul N, Tenerelli J, Chapron B, Waldteufel P (2007) Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS. IEEE Trans Geosci Remote Sens 45(7):2073–2087

    Article  Google Scholar 

  • Richter J, Nötel D, Klöppel F, Huck J, Essen H, Schmidt L-P (2006) A multi -channel radiometer with focal plane array antenna for W-band passive millimeter-wave imaging. In: IEEE international MTT symposium, San Francisco, 2006

    Google Scholar 

  • Ruf CS, Swift CT, Tanner AB, Le Vine DM (1988) Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans Geosci Remote Sens 26(5):597–611

    Article  Google Scholar 

  • Schreiber E (2014) Fully-electronic passive microwave imaging system using beam steering by frequency shift and aperture synthesis. In: DLR Forschungsbericht 2014–06, DLR Bibliotheks- und Informationswesen, Cologne, 2014 (in German)

    Google Scholar 

  • Schreiber E, Peichl M (2013) The design of a broadband slotted waveguide antenna for electronic beam steering applications in MW radiometry. In: Proceedings of European microwave conference EuMC, Nuremberg, 2013

    Google Scholar 

  • Schuetz CA, Martin RD, Biswas I, Mirotznik MS, Shi S, Schneider GJ, Murakowski J, Prather DW (2007) Sparse aperture millimeter-wave imaging using optical detection and correlation techniques. In: Proceedings of SPIE defence security + sensing symposium – passive and active MMW imaging X, Orlando, vol 6548, 2007

    Google Scholar 

  • Schuetz CA, Martin R, Dillon T, Yao P, Mackrides D, Harrity C, Zablocki A, Shreve K, Bonnett J, Curt P, Prather DW (2013) Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion. In: Proceedings of SPIE defence security + sensing symposium – passive and active MMW Imaging XVI, vol 8715, Baltimore, 2013

    Google Scholar 

  • Shannikov DV, Kuzmin SV, Voronin VA, Rybakov YV, Shchukin GG, Khaikin VB (2005) Microwave radiometric and antenna systems for mapping of atmosphere and underlying surface, International Symposium on Remote Sensing of Environment, ISRSE. http://www.isprs.org/publications/related/ISRSE/html/papers/935.pdf

  • Skou N (1997) Measurement of small antenna reflector losses for radiometer calibration budget. IEEE Trans Geosci Remote Sens 35(4):967–971

    Article  Google Scholar 

  • Skou N, Le Vine D (2006) Microwave radiometer systems – design and analysis, 2nd edn. Norwood, Artech House

    Google Scholar 

  • Sönmez MK, Trew RJ, Hearn CP (1992) Front-end topologies for phased array radiometry. In: 22nd European microwave conference, vol 2, 5–9 Helsinki, Sept 1992

    Google Scholar 

  • Srinivasan K, Limaye A, Laymon C, Meyer P (2010) Phased array radiometer calibration using a radiated noise source. In: IEEE geoscience and remote sensing symposium, 26–30, Honolulu, July 2010

    Google Scholar 

  • Stutzman WL, Thiele GA (1998) Antenna theory and design. Wiley, New York

    Google Scholar 

  • Tanner AB (2007) Initial results of the geostationary synthetic thinned array radiometer (GeoSTAR) demonstrator instrument. IEEE Trans Geosci Remote Sens 45(7):1947–1957

    Article  Google Scholar 

  • Thompson AR, Moran JM, Swenson GW (2001) Interferometry and synthesis in radio astronomy, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Tudosie G (2009) Analysis and design of compact passive distribution networks for microwave applications. Dissertation ETH No. 18340, Swiss Federal Institute of Technology (ETH) Zurich

    Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1981) Microwave remote sensing, active and passive. In: Microwave remote sensing fundamentals and radiometry, vol I. Addison-Wesley, Reading

    Google Scholar 

  • Veidt B (2006) Focal-plane array architectures: horn clusters vs. phased-array techniques, SKA Memo 71. www.skatelescope.org/pages/page_memos.htm

  • Warnick KF (2013) Phased-array antennas for radio astronomy. In: Radio science meeting (USNC-URSI NRSM), US National Committee of URSI National, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Peichl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Peichl, M. (2015). Radiometer Antennas. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics