Skip to main content

Holographic Antennas

  • Living reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

The holographic theory known from optics can also be used to describe the functionality of a special kind of leaky-wave antennas. Within the so-called holographic antenna, a hologram builds the radiating aperture, which is fed by surface-wave modes traveling on thin substrates. The hologram can be described as the interference pattern of the superposition of the traveling surface wave and the radiated plane wave. Therefore, it is possible to control the beam direction and beam shape of the holographic antenna by a modification of the hologram form. Compared to other kinds of leaky-wave antennas, the holographic antennas have also advantages in manufacturing and system integration, which make them to be a very promising antenna type for different millimeter-wave applications, e.g., radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamiuk G, Zwick T, Wiesbeck W (2008) Dual-orthogonal polarized Vivaldi antenna for ultra wideband applications. In: 17th international conference on microwaves, radar and wireless communications, Wroclaw, pp 1–4

    Google Scholar 

  • Alvarez-Lopez Y, Garcia-Gonzalez C, Vazquez-Antuna C, Ver-Hoeye S, Andres FL (2012) Frequency scanning based radar system. Prog Electromagn Res 132(9):275–296

    Article  Google Scholar 

  • Bai J, Shi S, Prather D (2011) Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Trans Microwave Theory Tech 59(4):1051–1057

    Article  Google Scholar 

  • Balanis CA (1997) Antenna theory: analysis and design. John Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  • Beer S (2013) Methoden und Techniken zur Integration von 122 GHz Antennen in miniaturisierte Radarsensoren, Karlsruher Forschungsberichte aus dem Institut f颶r Hochfrequenztechnik und Elektronik; 70, KIT Scientific Publishing, Karlsruhe, ISBN 9783731500513

    Google Scholar 

  • Beer S, Zwick T (2010) Probe based radiation pattern measurements for highly integrated millimeter-wave antennas. In: Proceedings of the fourth European conference on antennas and propagation (EuCAP), Barcelona

    Google Scholar 

  • Beer S, Rusch C, Gulan H, Gottel B, Girma M, Hasch J, … Zwick T (2013) An integrated 122-GHz antenna array with wire bond compensation for SMT radar sensors. IEEE Trans Antennas Propag 61(12):5976–5983

    Google Scholar 

  • Chan K-L, Judah SR (1998) A beam scanning frequency modu- lated continuous wave radar. IEEE Trans Instrum Meas 47(5):1223–1227

    Article  Google Scholar 

  • Checcacci P, Russo V, Scheggi A (1970) Holographic antennas. IEEE Trans Antennas Propag 18(6):811–813

    Article  Google Scholar 

  • Collier RJ, White PD (1976) Surface waves in microstrip circuits. In: 6th European microwave conference, Rome, pp 632–636

    Google Scholar 

  • Dong Y, Itoh T (2011) Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application. IEEE Trans Antennas Propag 60:760–771

    Article  Google Scholar 

  • ElSherbiny M, Fathy A, Rosen A, Ayers G, Perlow SM (2004) Holographic antenna concept, analysis, and parameters. IEEE Trans Antennas Propag 52(3):830–839

    Article  Google Scholar 

  • Farhat N (1980) Holographically steered millimeter wave antennas. IEEE Trans Antennas Propag 28(4):476–480

    Article  Google Scholar 

  • Fathy A, ElSherbiny M, Rosen A, Ayers G, Perlow S (2003a) Experimental demonstration of a 35 GHz holographic antenna. IEEE MTT-S Int Microwave Symp Dig 3:1833–1836

    Google Scholar 

  • Fathy A, Rosen A, OwenH, Kanamaluru S, McGinty F, McGee D, … ElSherbiny M (2001) Silicon based reconfigurable antennas. IEEE MTT-S Int Microwave Symp Dig 1:377–380

    Google Scholar 

  • Fathy A, Rosen A, Owen H, McGinty F, McGee D, Taylor G, … ElSherbiny M (2003b) Silicon-based reconfigurable antennas – concepts, analysis, implementation, and feasibility. IEEE Trans Microwave Theory Tech 51(6):1650–1661

    Google Scholar 

  • Frayne PG, Leggetter AJ (1991) Wideband measurements on Vivaldi travelling wave antennas. IEEE Colloq Multi-Octave Microwave Circuits 5/1–5/6

    Google Scholar 

  • Gabor D (1948) A new microscopic principle. Nature 161:777–778

    Article  Google Scholar 

  • Gandini E, Ettorre M, Casaletti M, Tekkouk K, Le Coq L, Sauleau R (2012) SIW slotted waveguide array with pillbox transition for mechanical beam scanning. IEEE Antennas Wirel Propag Lett 11:1572–1575

    Article  Google Scholar 

  • Guntupalli AB, Wu K (2013) Full-space scanning phased array system for future integrated high data rate communication over E-band and beyond. In: European microwave conference (EuMC), Nuremberg, pp 1607–1610

    Google Scholar 

  • Guntupalli A, Wu K (2012) Multi-dimensional scanning multi-beam array antenna fed by integrated waveguide Butler matrix. IEEE MTT-S Int Microwave Symp Dig 1–3

    Google Scholar 

  • Hammad H, Antar YM, Freundorfer A, Mahmoud S (2003) Uni-planar CPW-fed slot launchers for efficient TM0 surface-wave excitation. IEEE Trans Microwave Theory Tech 51(4):1234–1240

    Article  Google Scholar 

  • Hirvonen T, Ala-Laurinaho J, Tuovinen J, Raisanen A (1997) A compact antenna test range based on a hologram. IEEE Trans Antennas Propag 45(8):1270–1276

    Article  Google Scholar 

  • Hood AZ, Karacolak T, Topsakal E (2008) A small antipodal Vivaldi antenna for ultrawide-band applications. IEEE Antennas Wirel Propag Lett 7:656–660

    Article  Google Scholar 

  • Iizuka K, Urasaki S, Ushigome H (1975) Volume- type holographic antenna. IEEE Trans Antennas Propag 23(6):807–810

    Article  Google Scholar 

  • Lambrecht A, Beer S, Zwick T (2010) True-time-delay beamforming with a Rotman-lens for ultrawideband antenna systems. IEEE Trans Antennas Propag 58(10):3189–3195

    Article  Google Scholar 

  • Li Y, Zhu Q, Mo R (2011) Studies on the holographic antenna: theories and experiments. In: Asia-pacific microwave conference proceedings, Melbourne, pp 654–657

    Google Scholar 

  • Liu J, Jackson D, Long Y (2011) Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans Antennas Propag 60:20–29

    Article  Google Scholar 

  • Ma K-P, Qian Y, Itoh T (1999) Analysis and applications of a new CPW-slotline transition. IEEE Trans Microwave Theory Tech 47(4):426–432

    Article  Google Scholar 

  • Martinez-Ros A, Gomez-Tornero J, Goussetis G (2011) Planar leaky-wave antenna with flexible control of the complex propagation constant. IEEE Trans Antennas Propag 60:1625–1630

    Article  Google Scholar 

  • Mayer W, Wetzel M, Menzel W (2003) A novel direct-imaging radar sensor with frequency scanned antenna. IEEE MTT-S Int Microwave Symp Dig 3:1941–1944

    Google Scholar 

  • Oliner AA (1993) Leaky-wave antennas. In: Johnson R (ed) Antenna engineering handbook. McGraw-Hill, New York

    Google Scholar 

  • Pancera E, Zwick T, Wiesbeck W (2011) Spherical fidelity patterns of UWB antennas. IEEE Trans Antennas Propag 59(6):2111–2119

    Article  Google Scholar 

  • Paulotto S, Baccarelli P, Frezza F, Jackson D (2009) A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans Antennas Propag 57:1894–1906

    Article  Google Scholar 

  • Petosa A, Thirakoune S, Levis K, Ittipiboon A (2004) Micro- wave holographic antenna with integrated printed dipole feed. Electron Lett 40(19):1162–1163

    Article  Google Scholar 

  • Podilchak SK, Freundorfer AP, Antar YM (2008) Broadside radiation from a planar 2-D leaky-wave antenna by practical surface-wave launching. IEEE Antennas Wirel Propag Lett 7:517–520

    Article  Google Scholar 

  • Podilchak SK, Freundorfer AP, Antar YM (2009) Surface-wave launchers for beam steering and application to planar leaky-wave antennas. IEEE Trans Antennas Propag 57(2):355–363

    Article  Google Scholar 

  • Podilchak SK, Freundorfer AP, Antar YM (2011) A new leaky-wave antenna design using simple surface-wave power routing techniques. IEEE Int Symp Antennas Propag 3052–3054

    Google Scholar 

  • Rothammel K, Krischke A (1995) Antennenbuch. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Rotman W, Turner R (1963) Wide-angle microwave lens for line source applications. IEEE Transa Antennas Propag 11(6):623–632

    Article  Google Scholar 

  • Rusch C, Beer S, Gulan H, Zwick T (2013a) Holographic antenna with antipodal feed for frequency-scanning radar. In: 2013 I.E. antennas and propagation society international symposium (APSURSI), Orlando, pp 234–235

    Google Scholar 

  • Rusch C, Beer S, Pahl P, Zwick T (2013b) Multilayer holographic antenna with beam scanning in two dimensions at W-band. In: 7th European conference on antennas and propagation (EuCAP), Gothenburg, pp 2625–2628

    Google Scholar 

  • Rusch C, Beer S, Pahl P, Gulan H, Zwick T (2013c). Electronic beam scanning in two dimensions with holographic phased array antenna. In: International workshop on antenna technology (iWAT), Karlsruhe, pp 23–26

    Google Scholar 

  • Rusch C, Schäfer J, Gulan H, Zwick T (2014) 2D-scanning holographic antenna system with Rotman-lens at 60 GHz. In: European conference on antennas and propagation (EuCAP), The Hague

    Google Scholar 

  • Sazonov D (1999) Computer aided design of holographic antennas. IEEE Antennas Propag Soc Int Symp 2:738–741

    Google Scholar 

  • Schuhler M, Wansch R, Hein M (2010) On strongly truncated leaky-wave antennas based on periodically loaded transmission lines. IEEE Trans Antennas Propag 58:3505–3514

    Article  Google Scholar 

  • Skolnik M (1990) Radar handbook, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Solbach K, Schneider R (1999) Antenna technology for milli-meter wave automotive sensors. In: 29th European microwave conference, Munich, pp 139–142

    Google Scholar 

  • Sooriyadevan P, McNamara DA, Petosa A, Ittipboon A (2007) Electromagnetic modelling and optimisation of a planar holographic antenna. IET Microwaves Antennas Propag 1(3):693–699

    Article  Google Scholar 

  • Sutinjo A, Okoniewski M, Johnston RH (2010) A holographic antenna approach for surface wave control in microstrip antenna applications. IEEE Trans Antennas Propag 58(3):675–682

    Article  Google Scholar 

  • Thingvold SR, Ittipiboon A, Sebak A, Petosa A (2003) Holographic antenna efficiency. IEEE Antennas Propag Soc Int Symp 3:721–724

    Google Scholar 

  • Tsao H-Y, Yang D-H, Cheng J-C, Fu J, Lin W-P (2012) W-band SIW H-plane horn antenna development. In: 4th international high speed intelligent communication forum (HSIC), Nanjing, pp 1–3

    Google Scholar 

  • Yang N, Caloz C, Wu K (2010) Full-space scanning periodic phase-reversal leaky-wave antenna. IEEE Trans Microwave Theory Tech 58:2619–2632

    Article  Google Scholar 

  • Yngvesson KS, Korzeniowski TL, Kim Y-S, Kollberg EL, Johansson JF (1989) The tapered slot antenna – a new integrated element for millimeter-wave applications. IEEE Trans Microwave Theory Tech 37(2):365–374

    Article  Google Scholar 

  • Yun T-Y, Chang K (2001) A low-cost 8 to 26.5 GHz phased array antenna using a piezoelectric transducer controlled phase shifter. IEEE Trans Antennas Propag 49(9):1290–1298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Rusch, C. (2015). Holographic Antennas. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_113-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_113-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics