Skip to main content

Fabrication of Organic Materials for Electronic Textiles

  • Living reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Recent years have witnessed the possibility of realizing wearable electronic textiles as well as performance advances in electrical devices for incorporating high technology into daily garments. In the development of wearable electrical devices, conductive organic materials such as conducting polymers and carbon have emerged as the optimum materials for substituting conventional inorganic materials or metals. In this chapter, the efforts toward the development of high-performance conductive organic materials from their initial stages to date are described chronologically. A variety of methods for inserting electrical devices into fabric and surface treatment methods for enhancing the electrical properties of conductive organic materials are also discussed. Finally, conductive organic material-based sensors, transistors, light-emitting devices, actuators, solar cells, supercapacitors, and batteries were introduced as implementable wearable devices for electronic textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tiwari S, Rana F, Hanfi H, Hartstein A, Crabbe EF, Chan K (1996) A silicon nanocrystals-based memory. Appl Phys Lett 68:1377–1379

    Article  Google Scholar 

  2. Look DC (1989) Electrical characterization of GaAs materials and devices. Wiley, New York

    Google Scholar 

  3. Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 9:1880–1886

    Article  Google Scholar 

  4. Lee UJ, Lee SH, Yoon JJ, Oh SJ, Lee SH, Lee JK (2013) Surface interpenetration between conducting polymer and PET substrate for mechanically reinforced ITO-free flexible organic solar cells. Sol Energy Mater Sol Cells 108:50–56

    Article  Google Scholar 

  5. Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie D (2012) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846

    Article  Google Scholar 

  6. Kim DK, Oh KW, Kim SH (2009) Synthesis of conducting composite of polyaniline and multiwall carbon nanotube grafted with sulfonated polystyrene. Mol Cryst Liq Cryst 510:51–59

    Google Scholar 

  7. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  8. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nat Mater 8:500–506

    Article  Google Scholar 

  9. Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    Article  Google Scholar 

  10. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371

    Article  Google Scholar 

  11. Jiang L, Wang X, Chi L (2011) Nanoscaled surface patterning of conducting polymers. Small 10:1309–1321

    Article  Google Scholar 

  12. Brazovskii S, Kirova N (2010) Physical theory of excitons in conducting polymers. Chem Soc Rev 39:2453–2465

    Article  Google Scholar 

  13. Otero TF, Martinez JG, Pardilla JA (2012) Biomimetic electrochemistry from conducting polymers. A review artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim Acta 84:112–128

    Article  Google Scholar 

  14. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45:2403–2421

    Article  Google Scholar 

  15. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499

    Article  Google Scholar 

  16. Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8:11961–11978

    Article  Google Scholar 

  17. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101

    Article  Google Scholar 

  18. Genies EM, Bidan G, Diaz AF (1983) Spectroelectrochemical study of polypyrrole films. J Electroanal Chem 149:101–113

    Article  Google Scholar 

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  20. Kim DK, Oh KW, Kim SH (2008) Synthesis of polyaniline/multiwall carbon nanotube composite via inverse emulsion polymerization. J Polym Sci Part B Polym Phys 46:2255–2266

    Article  Google Scholar 

  21. Kim SH, Seong JH, Oh KW (2002) Effect of dopant mixture on the conductivity and thermal stability of polyaniline/nomex conductive fabric. J Appl Polym Sci 83:2245–2254

    Article  Google Scholar 

  22. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325

    Article  Google Scholar 

  23. Xue P, Tao XM (2005) Morphological and electromechanical studies of fibers coated with electrically conductive polymer. J Appl Polym Sci 98:1844–1854

    Article  Google Scholar 

  24. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293

    Article  Google Scholar 

  25. Liu RC, Liu ZP (2009) Polythiophene: synthesis in aqueous medium and controllable morphology. Chin Sci Bull 54:2028–2032

    Article  Google Scholar 

  26. Bowman D, Mattes BR (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32

    Article  Google Scholar 

  27. Choi JH, Kim SH, Oh KW (2007) Conjugated polyaniline nanorod blends with cyanoresin. Mol Cryst Liq Cryst 464:281–289

    Article  Google Scholar 

  28. Kim DK, Oh KW, Ahn HJ, Kim SH (2008) Synthesis and characterization of polypyrrole rod doped with p-toluenesulfonic acid via micelle formation. J Appl Polym Sci 107:3925–3932

    Article  Google Scholar 

  29. Rahman MA, Rahim A, Maniruzzaman M, Yang K, Lee C, Nam H, Soh H, Lee J (2011) ITO-free low-cost organic solar cells with highly conductive poly(3,4 ethylenedioxythiophene): p-toluene sulfonate anodes. Sol Energy Mater Sol Cells 95:3573–3578

    Article  Google Scholar 

  30. Hu L, Choi JW, Yang Y, Jeong S, Mantia FL, Cui LF, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 106:21490–21494

    Article  Google Scholar 

  31. Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X (2012) Graphene: an emerging electronic material. Adv Mater 24:5782–5825

    Article  Google Scholar 

  32. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  33. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  34. Lee BH, Park SH, Back H, Lee K (2011) Novel film-casting method for high-performance flexible polymer electrodes. Adv Funct Mater 21:487–493

    Article  Google Scholar 

  35. Lee SH, Lee DH, Lee K, Lee CW (2005) High-performance polyaniline prepared via polymerization in a self-stabilized dispersion. Adv Funct Mater 15:1495–1500

    Article  Google Scholar 

  36. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412

    Article  Google Scholar 

  37. Lim VWL, Kang ET, Neoh KG, Tan KL (2001) Lamination of conductive polypyrrole films to poly(tetrafluoroethylene) films via interfacial graft copolymerization. J Appl Polym Sci 80:716–727

    Article  Google Scholar 

  38. Chen FF (1974) Introduction to plasma physics and controlled fusion. Plenum Press, New York

    Google Scholar 

  39. Oh KW, Kim SH, Kim EA (2001) Improved surface characteristics and the conductivity of polyaniline-nylon 6 fabrics by plasma treatment. J Appl Polym Sci 81:684–694

    Article  Google Scholar 

  40. Singha K (2012) A review on coating & lamination in textiles: processes and applications. Am J Polym Sci 2:39–49

    Article  Google Scholar 

  41. Windmiller JR, Wang J (2013) Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25:29–46

    Article  Google Scholar 

  42. Ferreras LR, Pfattner R, Torrent MM, Laukhina E, Lopez L, Laukhin V, Rovira C, Veciana J (2011) Highly piezoresistive textiles based on a soft conducting charge transfer salt. J Mater Chem 21:637–640

    Article  Google Scholar 

  43. Viry L, Mercader C, Miaudet P, Zakri C, Derre A, Kuhn A, Maugey M, Poulin P (2010) Nanotube fibers for electromechanical and shape memory actuators. J Mater Chem 20:3487–3495

    Article  Google Scholar 

  44. Kim SH, Oh KW, Choi JH (2010) Preparation and self-assembly of polyaniline nanorods and their application as electroactive actuators. J Appl Polym Sci 116:2601–2609

    Google Scholar 

  45. Na SI, Kim SS, Jo J, Kim DY (2008) Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater 20:4061–4067

    Article  Google Scholar 

  46. Lim TH, Oh KW, Kim SH (2012) Self-assembly supramolecules to enhance electrical conductivity of polyaniline for a flexible organic solar cells anode. Sol Energy Mater Sol Cells 101:232–240

    Article  Google Scholar 

  47. Lv Z, Fu Y, Hou S, Wang D, Wu H, Zhang C, Chu Z, Zou D (2011) Large size, high efficiency fiber-shaped dye-sensitized solar cells. Phys Chem Chem Phys 13:10076–10083

    Article  Google Scholar 

  48. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  Google Scholar 

  49. Lim TH, Oh KW, Kim SH (2012) Polypyrrole/MWCNT-gr-PSSA composite for flexible and highly conductive transparent film. J Appl Polym Sci 123:388–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this entry

Cite this entry

Lim, T.H., Kim, S.H., Oh, K.W. (2014). Fabrication of Organic Materials for Electronic Textiles . In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-68-0_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-68-0_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4451-68-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics