Skip to main content

Medicinal Plant Based Advanced Drug Delivery System for the Treatment of Chronic Lung Diseases

  • Chapter
  • First Online:
Book cover Medicinal Plants for Lung Diseases

Abstract

Chronic pulmonary diseases such as bronchial asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and lung cancers represent the major health issues in both developing and developed countries. Till now various synthetic molecules are used to treat a wide range of pulmonary diseases. But due to some life-threatening side effects of the synthetic molecules, natural phytoconstituents or plant antibiotics are preferred as they have minimal side effects and efficient therapeutic outcomes. Though the drug delivery system used for administering the phytoconstituents so far is out of date, resulting in reduced efficacy of the drugs. So if the novel drug delivery system is used for the administration of herbal medicine, one may get improved results. Further introduction of a novel drug delivery system limits various drawbacks of traditional drug delivery systems. The advanced drug delivery system such as nanotechnology, oligonucleotides based systems, and other novel drug delivery system improves the pharmacokinetics of the drugs. For instance, nano-based systems such as liposomes, polymeric nanoparticles are designed to improve the bioavailability and stability of phytoconstituents used in chronic conditions such as lung cancer. Thus integration of novel drug delivery systems and herbal medicines proves to be an effective measure in combating serious chronic lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yhee J, Im J, Nho R (2016) Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med 5(9):82

    Article  PubMed Central  CAS  Google Scholar 

  2. Tripathi K (2003) Essentials of medical pharmacology, 6th edn. Jaypee, New Delhi

    Google Scholar 

  3. World Health Organization (2007) Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organization, Geneva, pp 12–36

    Google Scholar 

  4. Burney PG, Patel J, Newson R et al (2015) Global and regional trends in COPD mortality, 1990-2010. Eur Respir J 45(5):1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  5. Halbert RJ, Natoli JL, Gano A et al (2006) Global burden of COPD: systematic review and meta-analysis. Eur Respir J 28:523–532

    Article  CAS  PubMed  Google Scholar 

  6. Ley B, Collard HR (2013) Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol 5:483–492

    Article  PubMed  PubMed Central  Google Scholar 

  7. Masoli M, Fabian D, Holt S et al (2004) Global initiative for Asthma P. The global burden of asthma: executive summary of the GINA dissemination committee report. Allergy 59:469–478

    Article  PubMed  Google Scholar 

  8. Raghu G, Weycker D, Edelsberg J et al (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174:810–816

    Article  PubMed  Google Scholar 

  9. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15(8):551

    Article  CAS  PubMed  Google Scholar 

  10. Tian L, Shang Y, Chen R et al (2019) Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Part Fibre Toxicol 16(1):6–6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baker KE, Bonvini SJ, Donovan C (2014) Novel drug targets for asthma and COPD: Lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 29:181–198

    Article  CAS  PubMed  Google Scholar 

  12. Durham AL, Caramori G, Chung KF et al (2016) Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res 167:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujita Y, Takeshita F, Kuwano K (2013) RNAi therapeutic platforms for lung diseases. Pharmaceuticals 6:223–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer KC (2014) Diagnosis and management of interstitial lung disease. Transl Respir Med 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mali R, Dhake A (2011) A review on herbal antiasthmatics. Orient Pharm Exp Med 11:77–90

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mehta P, Shah R, Lohidasan S et al (2015) Pharmacokinetic profile of phytoconstituents(s) isolated from medicinal plants-a comprehensive review. J Tradit Complement Med 5(4):207–227

    Article  PubMed  PubMed Central  Google Scholar 

  17. World Health Organization (2018) WHO. In: Chronic respiratory diseases (CRDs): fact sheets. World Health Organization, Geneva

    Google Scholar 

  18. Londahl J, Möller W, Pagels JH et al (2014) Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv 27(4):229–254

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zarogoulidis P, Chatzaki E, Porpodis K et al (2012) Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomedicine 7:1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burhan E, Ruesen C, Ruslami R et al (2013) Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother 57:3614–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carvalho TC, Peters JI, Williams RO (2011) Influence of particle size on regional lung deposition—what evidence is there? Int J Pharm 406:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Di Gioia S, Trapani A, Castellani S (2015) Nanocomplexes for gene therapy of respiratory diseases: targeting and overcoming the mucus barrier. Pulm Pharmacol Ther 34:8–24

    Article  PubMed  CAS  Google Scholar 

  23. Ratemi E, Sultana SA, Al Faraj A et al (2016) Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin Exp Allergy 46:1033–1042

    Article  CAS  PubMed  Google Scholar 

  24. Mehta P, Dhapte V (2016) A comprehensive review on pharmacokinetic profile of some traditional Chinese medicines. New J Sci 2016:1–31

    Article  CAS  Google Scholar 

  25. Goldman P (2001) Herbal medicines today and the roots of modern pharmacology. Ann Intern Med 135:594–600

    Article  CAS  PubMed  Google Scholar 

  26. Evans W (2009) Pharmacogonasy, 16th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  27. Heinrich M, Barnes J, Gibbons S et al (2012) Fundamentals of pharmacognosy and phytotherapy, 2nd edn. Elsevier Ltd, London

    Google Scholar 

  28. Mehta P, Lohidasan S, Mahadik K (2017) Pharmacokinetic behaviour of clinically important TCM prescriptions. Orient Pharm Exp Med 17:171–188

    Article  Google Scholar 

  29. Penton-Arias E, Haines D (2011) Natural Products: immuno-rebalancing therapeutic approaches. Immune Rebalancing 2011:229–249

    Google Scholar 

  30. Norman GB (2001) Herbal drugs and phytopharmaceuticals. A handbook for practice on a scientific basis, 2nd edn. Medpharm Scientific Publishers, New York, pp 230–248

    Google Scholar 

  31. Semalty A, Semalty M, Rawat BS et al (2009) Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv 6:599–612

    Article  CAS  PubMed  Google Scholar 

  32. Amit J, Sunil C, Vimal K et al (2008) Phytosomes: a revolution in herbal drugs. The pharma review. Kongposh Publications Pvt. Ltd, New Delhi, pp 24–28

    Google Scholar 

  33. Parakh SR, Gothoskar AV (2003) Review of mouth dissolving tablet technologies. Pharmaceutical Technology/Advanstar Communications, Duluth, pp 47–52

    Google Scholar 

  34. Blatt Y, Kimmelman E, Cohen D et al (2002) Microencapsulated and controlled-release herbal formulations. United States Patent 6,340,478

    Google Scholar 

  35. Marechal D, Yang W, Yuzhang H (2009). Sustained-release microgranules containing gingko biloba extract and the process for manufacturing these. United States Patent 7,569,236

    Google Scholar 

  36. Sterer N, Nuas S, Mizrahi B et al (2008) Oral malodor reduction by a palatal mucoadhesive tablet containing herbal formulation. J Dent 36:535–539

    Article  CAS  PubMed  Google Scholar 

  37. Verma M, Gupta PK, Varsha BP et al (2007) Development of transdermal drug dosage formulation for the anti-rheumatic Ayurvedic medicinal plants. Anc Sci Life 11:66–69

    Google Scholar 

  38. Ma B, Duan X, Wang Z (2000) Clinical and experimental study on Shuanghua aerosol in treating infantile upper respiratory tract infection. Zhongguo Zhong Xi Yi Jie He Za Zhi 20:653–655

    CAS  PubMed  Google Scholar 

  39. Tanwar YS, Gupta GD, Ramawa KG (2006) Development and evaluation of microparticles of Gugulipid. The pharma review. Kongposh Publications Pvt. Ltd, New Delhi, pp 124–132

    Google Scholar 

  40. Shen YJ, Zhang ZW, Luo XG et al (2008) Nanoparticles of traditional Chinese herbs inhibit thrombosis in vivo. Haematologica 93:1457

    CAS  Google Scholar 

  41. Zhao HR, Wang K, Zhao Y (2002) Novel sustained release implant of herb extract using chitosan. Biomaterials 23:4459–4462

    Article  CAS  PubMed  Google Scholar 

  42. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  43. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung CY, Yang JT, Kuo YC (2013) Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials 34:9717–9727

    Article  CAS  PubMed  Google Scholar 

  46. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  47. Ngoune R, Peters A, von Elverfeldt D et al (2016) Accumulating nanoparticles by EPR: A route of no return. J Control Release 238:58–70

    Article  CAS  PubMed  Google Scholar 

  48. Gipps EM, Arshady R, Kreuter J et al (1986) Distribution of polyhexyl cyanoacrylate nanoparticles in nude mice bearing human osteosarcoma. J Pharm Sci 75:256–258

    Article  CAS  PubMed  Google Scholar 

  49. Rolland A, Collet B, Le Verge R et al (1989) Blood clearance and organ distribution of intravenously administered polymethacrylic nanoparticles in mice. J Pharm Sci 78:481–484

    Article  CAS  PubMed  Google Scholar 

  50. Zara GP, Cavalli R, Fundaro A et al (1999) Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res 40:281–286

    Article  CAS  PubMed  Google Scholar 

  51. Savla R, Minko T (2013) Nanotechnology approaches for inhalation treatment of fibrosis. J Drug Target 21:914–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuzmov A, Minko T (2015) Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 219:500–518

    Article  CAS  PubMed  Google Scholar 

  53. Lehofer B, Bloder F, Jain PP et al (2014) Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harbouring different surface characteristics. Eur J Pharm Biopharm 88:1076–1085

    Article  CAS  PubMed  Google Scholar 

  54. Allen TM (1998) Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 56:747–756

    Article  CAS  PubMed  Google Scholar 

  55. Winterhalter M, Frederik PM, Vallner JJ et al (1997) Stealth(R) liposomes: from theory to product. Adv Drug Deliv Rev 24:165–177

    Article  Google Scholar 

  56. Muralidharan P, Malapit M, Mallory E et al (2015) Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine 11:1189–1199

    Article  CAS  PubMed  Google Scholar 

  57. Van Rijt SH, Bein T, Meiners S (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 44:765–774

    Article  PubMed  CAS  Google Scholar 

  58. Kaminskas LM, McLeod VM, Ryan GM et al (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26

    Article  CAS  PubMed  Google Scholar 

  59. Ryan GM, Kaminskas LM, Kelly BD et al (2013) Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm 10:2986–2995

    Article  CAS  PubMed  Google Scholar 

  60. Paranjpe M, Muller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci 15:5852–5873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Elhissi AMA, Faizi M, Naji WF et al (2007) Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures. Int J Pharm 334:62–70

    Article  CAS  PubMed  Google Scholar 

  62. Niven RW (1995) Delivery of biotherapeutics by inhalation aerosol. Crit Rev Ther Drug Carr Syst 12:151–231

    Article  CAS  Google Scholar 

  63. Kim T, Hyeon T (2014) Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25:012001

    Article  CAS  PubMed  Google Scholar 

  64. Yhee JY, Son S, Kim N et al (2014) Theranostic applications of organic nanoparticles for cancer treatment. MRS Bull 39:239–249

    Article  CAS  Google Scholar 

  65. Nassimi M, Schleh C, Lauenstein HD et al (2010) A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm 75:107–116

    Article  CAS  PubMed  Google Scholar 

  66. Elhissi AMA, Islam MA, Arafat B et al (2010) Development and characterisation of freeze-dried liposomes containing two anti-asthma drugs. Micro Nano Lett 5:184–188

    Article  CAS  Google Scholar 

  67. Hoesel LM, Flierl MA, Niederbichler AD et al (2008) Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. Antioxid Redox Signal 10:973–981

    Article  CAS  PubMed  Google Scholar 

  68. Jokerst JV, Lobovkina T, Zare RN et al (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728

    Article  CAS  PubMed  Google Scholar 

  69. Van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24:1405–1414

    Article  PubMed  CAS  Google Scholar 

  70. Schuster BS, Suk JS, Woodworth GF (2013) Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34:3439–3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Surti N, Naik S, Bagchi T et al (2008) Intracellular delivery of nanoparticles of an antiasthmatic drug. AAPS Pharm Sci Technol 9:217–223

    Article  CAS  Google Scholar 

  72. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  73. Bharatwaj B, Mohammad AK, Dimovski R et al (2015) Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm 12:826–838

    Article  CAS  PubMed  Google Scholar 

  74. Ding Y, Jiang Z, Saha K et al (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22:1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res 12:2313–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mehta P (2018) Imagine the superiority of dry powder inhalers from carrier engineering. J Drug Deliv 2018:5635010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sanders M (2007) Inhalation therapy: an historical review. Prim Care Respir J 16(2):71–81

    Article  PubMed  PubMed Central  Google Scholar 

  78. Prota L, Santoro A, Bifulco M et al (2011) Leucine enhances aerosol performance of naringin dry powder and its activity on cystic fibrosis airway epithelial cells. Int J Pharm 412:8–19

    Article  CAS  PubMed  Google Scholar 

  79. Rogers L, Cismowski M (2018) Oxidative stress in the lung- the essential paradox, Curr. Opin Toxicol 7:37–43

    Article  Google Scholar 

  80. Sansone F, Aquino R, Del Gaudio P et al (2009) Physical characteristics and aerosol performance of naringin dry powders for pulmonary delivery prepared by spray-drying. Eur J Pharm Biopharm 72(1):206–213

    Article  CAS  PubMed  Google Scholar 

  81. Taki M, Tagami T, Fukushige K et al (2016) Fabrication of nanocomposite particles using a two-solution mixing-type spray nozzle for use in an inhaled curcumin formulation. Int J Pharm 511(1):104–110

    Article  CAS  PubMed  Google Scholar 

  82. El-Sherbiny I, Smyth H (2012) Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. J Mol Pharm Org Process Res 9:269–280

    CAS  Google Scholar 

  83. Kurniawansyah F, Mammucari R, Foster N (2015) Inhalable curcumin formulations by supercritical technology. Powder Technol 284:289–298

    Article  CAS  Google Scholar 

  84. Wang Z, Gupta S, Meenach S (2017) Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery. Int J Pharm 525(1):264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Na L, Dan-dan T, Li-wen W (2014) Preparation of dry powder inhalation based on phytosomes-chitosan microspheres by spray-drying method and study on its characterization, Chin. Tradit Herbal Drugs 45(17):2475–2481

    Google Scholar 

  86. Dimer F, Ortiz M, Pohlmann A et al (2015) Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J Drug Deliv Sci Technol 29:152–158

    Article  CAS  Google Scholar 

  87. Trotta V, Lee W, Loo C (2015) In vitro biological activity of resveratrol using a novel inhalable resveratrol spray-dried formulation. Int J Pharm 491:190–197

    Article  CAS  PubMed  Google Scholar 

  88. Scalia S, Haghi M, Losi V et al (2013a) Quercetin solid lipid microparticles: a flavonoid for inhalation lung delivery. Eur J Pharm Sci 49(2):278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scalia S, Trotta V, Traini D et al (2013b) Incorporation of quercetin in respirable lipid microparticles: effect on stability and cellular uptake on A549 pulmonary alveolar epithelial cells. Colloids Surf B Biointerfaces 112:322–329

    Article  CAS  PubMed  Google Scholar 

  90. Madunic J, Madunic I, Gajski G et al (2018) Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett 413:11–22

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, Lv H, Jiang K et al (2011) Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int J Pharm 420(1):180–188

    Article  CAS  PubMed  Google Scholar 

  92. Mohtar N, Taylor K, Sheikh K et al (2017) Design and development of dry powder sulfobutylether-b-cyclodextrin complex for pulmonary delivery of fisetin. Eur J Pharm Biopharm 113:1–10

    Article  CAS  PubMed  Google Scholar 

  93. Chen R, Qi QL, Wang M et al (2016) Therapeutic potential of naringin: an overview. Pharm Biol 54(12):3203–3210

    Article  CAS  PubMed  Google Scholar 

  94. Saraf S, Gupta A, Alexander A et al (2015) Advancements and avenues in Nanophytomedicines for better pharmacological responses. J Nanosci Nanotechnol 15(6):4070–4079

    Article  CAS  PubMed  Google Scholar 

  95. Li X, Guo Q, Zheng X et al (2009) Preparation of honokiol-loaded chitosan microparticles via spray-drying method intended for pulmonary delivery. Drug Deliv 16(3):160–166

    Article  CAS  PubMed  Google Scholar 

  96. Mali A, Bothiraja C, Purohit RN et al (2017) In vitro and in vivo performance of novel spray dried andrographolide loaded scleroglucan based formulation for dry powder inhaler. Curr Drug Deliv 14(7):968–980

    Article  CAS  PubMed  Google Scholar 

  97. Zhang T, Zhu L, Li M et al (2017) Inhalable Andrographolide-β-cyclodextrin inclusion complexes for treatment of Staphylococcus aureus pneumonia by regulating immune responses. Mol Pharm 14(5):1718–1725

    Article  CAS  PubMed  Google Scholar 

  98. Corcoran T, Venkataramanan R, Hoffman R et al (2013) Systemic delivery of atropine sulfate by the MicroDose dry-powder inhaler. J Aerosol Med Pulm Drug Deliv 26(1):46–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ali R, Jain GK, Iqbal Z et al (2009) Development and clinical trial of nano-atropine sulphate dry powder inhaler as a novel organophosphorus poisoning antidote. Nanomedicine 5(1):55–63

    Article  CAS  PubMed  Google Scholar 

  100. Van Drooge D, Hinrichs W, Dickhoff B et al (2005) Spray freeze drying to produce a stable Δ9-tetrahydrocannabinol containing inulin based solid dispersion powder suitable for inhalation. Eur J Pharm Sci 26(2):231–240

    Article  PubMed  CAS  Google Scholar 

  101. Khan J, Ajazuddin AA, Saraf S et al (2013) Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168(1):50–60

    Article  CAS  PubMed  Google Scholar 

  102. Squillaro T, Peluso G, Melone MAB (2017) Nanotechnology-based polyphenol delivery: a novel therapeutic strategy for the treatment of age-related neurodegenerative disorder. Austin Aging Res 1(1):1004

    Google Scholar 

  103. Mehta P (2016) Dry powder inhalers: a focus on advancements in novel drug delivery systems. J Drug Deliv 2016:8290963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Naksuriya O, Okonogi S, Schiffelers R et al (2014) Curcumin nano formulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35(10):3365–3383

    Article  CAS  PubMed  Google Scholar 

  105. Feng T, Wei Y, Lee R et al (2017) Liposomal curcumin and its application in cancer. Int J Nanomedicine 12:6027–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pangeni R, Sahni J, Ali J et al (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11(8):1285–1298

    Article  CAS  PubMed  Google Scholar 

  107. Carter L, D’Orazio J, Pearson K (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):209–225

    Article  CAS  Google Scholar 

  108. Jadhav P, Bothiraja C, Pawar A (2016) Resveratrol-piperine loaded mixed micelles: formulation, characterization, bioavailability, safety and in vitro anticancer study. RSC Adv 6:112795–112805

    Article  CAS  Google Scholar 

  109. Zhu X, Lei X, Dong W (2017) Resveratrol as a potential therapeutic drug for respiratory system diseases. Drug Des Dev Ther 11:3591–3598

    Article  CAS  Google Scholar 

  110. de Oliveira M, Nabavi S, Braidy N et al (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34(5):532–549

    Article  PubMed  CAS  Google Scholar 

  111. Papay Z, Kosa A, Boddi B et al (2017) Study on the pulmonary delivery system of apigenin loaded albumin nanocarriers with antioxidant activity. J Aerosol Med Pulm Drug Deliv 30(4):274–288

    Article  CAS  PubMed  Google Scholar 

  112. Gao Y, Snyder S, Smith J et al (2016) Anticancer properties of baicalein: a review. Med Chem Res 25(8):1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bothiraja C, Yojana B, Pawar A et al (2014) Fisetin-loaded nanocochleates: formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin Drug Deliv 11(1):17–29

    Article  CAS  PubMed  Google Scholar 

  114. Mehta P, Pawar A, Mahadik K et al (2018) Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed Pharmacother 106:1282–1291

    Article  CAS  PubMed  Google Scholar 

  115. Bharti S, Rani N, Krishnamurthy B et al (2014) Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med 80(6):437–451

    Article  CAS  PubMed  Google Scholar 

  116. Gera S, Talluri S, Rangaraj N (2017) Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS Pharm Sci Technol 18(8):3151–3162

    Article  CAS  Google Scholar 

  117. Xing J, You H, Dong Y et al (2011) Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces. Acta Pharmacol Sin 32(5):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Woodbury A, Yu S, Wei L et al (2013) Neuro-modulating effects of honokiol: a review. Front Neurol 4:130

    Article  PubMed  PubMed Central  Google Scholar 

  119. Thingale A, Shaikh K, Channekar P et al (2015) Enhanced hepatoprotective activity of andrographolide complexed with a biomaterial. Drug Deliv 22(1):117–124

    Article  CAS  PubMed  Google Scholar 

  120. Bothiraja C, Kumbhar V, Pawar A et al (2015) Development of floating in situ gelling system as an efficient anti-ulcer formulation: in vitro and in vivo studies. RSC Adv 5:28848

    Article  CAS  Google Scholar 

  121. Behcet AL (2014) The source-synthesis- history and use of atropine. Acad Emerg Med 2014:132–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, H., Kamboj, A., Gautam, R.K. (2021). Medicinal Plant Based Advanced Drug Delivery System for the Treatment of Chronic Lung Diseases. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_25

Download citation

Publish with us

Policies and ethics