Skip to main content

Introduction to Chronic Respiratory Diseases: A Pressing Need for Novel Therapeutic Approaches

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases

Abstract

Chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and lung cancer are among the leading causes of global mortality and morbidity, whereby these diseases have brought enormous healthcare, economic, and social burden in many countries. Multiple components of the respiratory system are affected by chronic respiratory diseases, which include the respiratory airways, lung parenchyma, as well as pulmonary vasculature. Recent advances in medical research have led to the development of various pharmacotherapeutic agents for the management of chronic respiratory diseases, such as bronchodilators, corticosteroids, and antibiotics. Despite that, the use of conventional therapeutics has been futile as they are only capable of alleviating the symptoms associated with the diseases but did not effectively cure or prevent the progression of these diseases. This chapter discusses the pathogenesis of various chronic respiratory disorders and the limitations of current therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan Y, Ng SW, Mehta M et al (2020a) Sugar-based nanoparticles for respiratory diseases: a new paradigm in the nanoworld. Future Med Chem. https://doi.org/10.4155/fmc-2020-0206

  2. Shukla SD, Swaroop Vanka K, Chavelier A et al (2020a) Chronic respiratory diseases: an introduction and need for novel drug delivery approaches. In: Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Elsevier, Amsterdam, pp 1–31

    Google Scholar 

  3. Ambrosino N, Bertella E (2018) Lifestyle interventions in prevention and comprehensive management of COPD. Breathe 14:186–194

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prasher P, Sharma M, Mehta M et al (2020) Plants derived therapeutic strategies targeting chronic respiratory diseases: chemical and immunological perspective. Chem Biol Interact 325:109125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forum of International Respiratory Societies (2017) The global impact of respiratory disease- 2a ed, 2nd edn. European Respiratory Society

    Google Scholar 

  6. World Health Organization (2018) Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 26 Oct 2020

  7. Lin BF, Chiang BL, Ma Y, et al (2015) Traditional herbal medicine and allergic asthma. Evidence-based complement. Altern Med 2015

    Google Scholar 

  8. Liu F, Xuan NX, Ying SM et al (2016) Herbal medicines for asthmatic inflammation: from basic researches to clinical applications. Mediat Inflamm 2016

    Google Scholar 

  9. Santana FPR, Pinheiro NM, Mernak MIB et al (2016) Evidences of herbal medicine-derived natural products effects in inflammatory lung diseases. Mediators Inflamm:2016

    Google Scholar 

  10. Durham AL, Caramori G, Chung KF, Adcock IM (2016) Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res 167:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim HP, Lim H, Kwon YS (2017) Therapeutic potential of medicinal plants and their constituents on lung inflammatory disorders. Biomol Ther 25:91–104

    Article  CAS  Google Scholar 

  12. Khaltaev N, Axelrod S (2019) Chronic respiratory diseases global mortality trends, treatment guidelines, life style modifications, and air pollution: preliminary analysis. J Thorac Dis 11:2643–2655

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gross NJ, Barnes PJ (2017) New therapies for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 195:159–166

    Article  CAS  PubMed  Google Scholar 

  14. Brown K, Lynch DT (2018) Histology, Lung. StatPearls Publishing

    Google Scholar 

  15. Haddad M, Sharma S (2019) Physiology, Lung. StatPearls Publishing

    Google Scholar 

  16. Wagner PD (2015) The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases. Eur Respir J 45:227–243. https://doi.org/10.1183/09031936.00039214

    Article  CAS  PubMed  Google Scholar 

  17. Butler JP, Tsuda A (2011) Transport of gases between the environment and alveoli-theoretical foundations. Compr Physiol 1:1301–1316. https://doi.org/10.1002/cphy.c090016

    Article  PubMed  PubMed Central  Google Scholar 

  18. Petersson J, Glenny RW (2014) Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J 44:1023–1041

    Article  PubMed  Google Scholar 

  19. Haynes JM (2018) Basic spirometry testing and interpretation for the primary care provider. Can J Respir Ther 54:92–98. https://doi.org/10.29390/cjrt-2018-017

    Article  Google Scholar 

  20. Franks TJ, Colby T V., Travis WD, et al (2008) Resident cellular components of the human lung current knowledge and goals for research on cell phenotyping and function. In: Proceedings of the American Thoracic Society. pp. 763–766

    Google Scholar 

  21. Whitsett JA, Wert SE, Weaver TE (2010) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abe J, Ito S, Takahashi S et al (2016) Mixed squamous cell and glandular papilloma of the lung resembling early adenocarcinoma: a case report. Ann Med Surg 7:61–64. https://doi.org/10.1016/j.amsu.2016.03.025

    Article  Google Scholar 

  23. Travis WD, Garg K, Franklin WA et al (2006) Bronchioloalveolar carcinoma and lung adenocarcinoma: the clinical importance and research relevance of the 2004 world health organization pathologic criteria. J Thoracic Oncol, In, pp S13–S19

    Google Scholar 

  24. Harkness LM, Kanabar V, Sharma HS et al (2014) Pulmonary vascular changes in asthma and COPD. Pulm Pharmacol Ther 29:144–155. https://doi.org/10.1016/j.pupt.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  25. Rock JR, Randell SH, Hogan BLM (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. DMM Dis Model Mech 3:545–556

    Article  CAS  PubMed  Google Scholar 

  26. Busse PJ, McDonald VM, Wisnivesky JP, Gibson PG (2020) Asthma across the ages: adults. J Allergy Clin Immunol Pract 8:1828–1838. https://doi.org/10.1016/j.jaip.2020.03.044

    Article  PubMed  Google Scholar 

  27. Ebmeier S, Thayabaran D, Braithwaite I et al (2017) Trends in international asthma mortality: analysis of data from the WHO mortality database from 46 countries (1993–2012). Lancet 390:935–945. https://doi.org/10.1016/S0140-6736(17)31448-4

    Article  PubMed  Google Scholar 

  28. Stern J, Pier J, Litonjua AA (2020) Asthma epidemiology and risk factors. Semin Immunopathol 42:5–15

    Article  PubMed  Google Scholar 

  29. Papi A, Brightling C, Pedersen SE, Reddel HK (2018a) Asthma. Lancet 391:783–800

    Article  PubMed  Google Scholar 

  30. Nunes C, Pereira AM, Morais-Almeida M (2017) Asthma costs and social impact. Asthma Res Pract 3. https://doi.org/10.1186/s40733-016-0029-3

  31. Ray A, Oriss TB, Wenzel SE (2015) Emerging molecular phenotypes of asthma. Am J Physiol - Lung Cell Mol Physiol 308:L130–L140

    Article  CAS  PubMed  Google Scholar 

  32. Fanta CH Asthma in adolescents and adults: evaluation and diagnosis. In: UpToDate.. https://www.uptodate.com/contents/asthma-in-adolescents-and-adults-evaluation-and-diagnosis

  33. Subbarao P, Mandhane PJ, Sears MR (2009) Asthma: epidemiology, etiology and risk factors. CMAJ 181:E181

    Article  PubMed  PubMed Central  Google Scholar 

  34. Win PH, Hussain I (2008) Asthma triggers: what really matters? Clinical Asthma. Elsevier Inc., In, pp 149–156

    Google Scholar 

  35. Pavord ID, Beasley R, Agusti A et al (2018) After asthma: redefining airways diseases. Lancet 391:350–400

    Article  PubMed  Google Scholar 

  36. Quirt J, Hildebrand KJ, Mazza J et al (2018) Asthma. Allergy, asthma. Clin Immunol 14:50

    Google Scholar 

  37. Barnes PJ (2016) Asthma mechanisms. Medicine 44:265–270

    Article  Google Scholar 

  38. Fahy JV (2015) Type 2 inflammation in asthma-present in most, absent in many. Nat Rev Immunol 15:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuruvilla ME, Lee FEH, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56:219–233

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaplan AG, Balter MS, Bell AD et al (2009) Diagnosis of asthma in adults. CMAJ 181:E210

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gallucci M, Carbonara P, Pacilli AMG et al (2019) Use of symptoms scores, spirometry, and other pulmonary function testing for asthma monitoring. Front Pediatr 7:54

    Article  PubMed  PubMed Central  Google Scholar 

  42. Colice GL (2004) Categorizing asthma severity: an overview of national guidelines. Clin Med Res 2:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  43. Global Initiative for Asthma (2020) Pocket guide for asthma management and prevention (for adults and children older than 5 years)

    Google Scholar 

  44. National Heart Lung and Blood Institute (2007) Expert panel report 3: guidelines for the diagnosis and management of asthma. https://www.nhlbi.nih.gov/sites/default/files/media/docs/EPR-3_Asthma_Full_Report_2007.pdf

  45. O’Byrne PM, FitzGerald JM, Bateman ED et al (2018) Inhaled combined Budesonide–Formoterol as needed in mild asthma. N Engl J Med 378:1865–1876. https://doi.org/10.1056/nejmoa1715274

    Article  CAS  PubMed  Google Scholar 

  46. Beasley R, Holliday M, Reddel HK et al (2019) Controlled trial of Budesonide–Formoterol as needed for mild asthma. N Engl J Med 380:2020–2030. https://doi.org/10.1056/nejmoa1901963

    Article  PubMed  Google Scholar 

  47. Fanta CH (n.d.-b) An overview of asthma management. In: UpToDate. https://www.uptodate.com/contents/an-overview-of-asthma-management

  48. Rank MA, Hagan JB, Park MA et al (2013) The risk of asthma exacerbation after stopping low-dose inhaled corticosteroids: A systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 131. https://doi.org/10.1016/j.jaci.2012.11.038

  49. Wang W, Li Y, Lv Z et al (2018) Bronchial allergen challenge of patients with atopic asthma triggers an Alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol 201:2221–2231. https://doi.org/10.4049/jimmunol.1800709

    Article  CAS  PubMed  Google Scholar 

  50. Eger KA, Bel EH (2019) The emergence of new biologics for severe asthma. Curr Opin Pharmacol 46:108–115

    Article  CAS  PubMed  Google Scholar 

  51. Busse W, Corren J, Lanier BQ et al (2001) Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 108:184–190. https://doi.org/10.1067/mai.2001.117880

    Article  CAS  PubMed  Google Scholar 

  52. Hynes G, Pavord ID (2020) Targeted biologic therapy for asthma. Br Med Bull 133:16–35. https://doi.org/10.1093/bmb/ldaa004

    Article  CAS  PubMed  Google Scholar 

  53. Doroudchi A, Pathria M, Modena BD (2020) Asthma biologics: comparing trial designs, patient cohorts and study results. Ann Allergy Asthma Immunol 124:44–56

    Article  PubMed  Google Scholar 

  54. McCracken JL, Tripple JW, Calhoun WJ (2016) Biologic therapy in the management of asthma. Curr Opin Allergy Clin Immunol 16:375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Global Initiative for Chronic Obstructive Pulmonary Disease (2018) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2018 report)

    Google Scholar 

  56. Han MK, Dransfield MT, Martinez FJ (n.d.) Chronic obstructive pulmonary disease: definition, clinical manifestations, diagnosis, and staging - UpToDate. In: UpToDate. https://www.uptodate.com/contents/chronic-obstructive-pulmonary-disease-definition-clinical-manifestations-diagnosis-and-staging

  57. Burney P, Jithoo A, Kato B et al (2014) Chronic obstructive pulmonary disease mortality and prevalence: the associations with smoking and poverty-A bold analysis. Thorax 69:465–473. https://doi.org/10.1136/thoraxjnl-2013-204460

    Article  PubMed  Google Scholar 

  58. Ford ES, Croft JB, Mannino DM et al (2013a) COPD surveillance - United States, 1999-2011. Chest 144:284–305. https://doi.org/10.1378/chest.13-0809

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ford ES, Mannino DM, Wheaton AG et al (2013b) Trends in the prevalence of obstructive and restrictive lung function among adults in the United States: findings from the National Health and nutrition examination surveys from 1988-1994 to 2007-2010. Chest 143:1395–1406. https://doi.org/10.1378/chest.12-1135

    Article  PubMed  Google Scholar 

  60. World Health Organization (2017) Chronic obstructive pulmonary disease (COPD). https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd). Accessed 31 Oct 2020

  61. Buist AS, McBurnie MA, Vollmer WM et al (2007) International variation in the prevalence of COPD (the BOLD study): a population-based prevalence study. Lancet 370:741–750. https://doi.org/10.1016/S0140-6736(07)61377-4

    Article  PubMed  Google Scholar 

  62. Rajendra KC, Shukla SD, Gautam SS et al (2018) The role of environmental exposure to non-cigarette smoke in lung disease. Clin Transl Med 7:39. https://doi.org/10.1186/s40169-018-0217-2

    Article  Google Scholar 

  63. Shah PL, Herth FJ, van Geffen WH et al (2017) Lung volume reduction for emphysema. Lancet Respir Med 5:147–156

    Article  PubMed  Google Scholar 

  64. Terzikhan N, Verhamme KMC, Hofman A et al (2016) Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam study. Eur J Epidemiol 31:785–792. https://doi.org/10.1007/s10654-016-0132-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Global Initiative for Chronic Obstructive Lung Disease (GOLD). https://goldcopd.org/. Accessed 31 Oct 2020

  66. Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    Article  PubMed  Google Scholar 

  67. Berg K, Wright JL (2016) The pathology of chronic obstructive pulmonary disease: progress in the 20th and 21st centuries. Arch Pathol Lab Med 140:1423–1428

    Article  PubMed  Google Scholar 

  68. MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. In: Proceedings of the American Thoracic Society. American Thoracic Society, pp 258–266

    Google Scholar 

  69. Kim V, Criner GJ (2013) Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187:228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim V, Criner GJ (2015) The chronic bronchitis phenotype in chronic obstructive pulmonary disease: features and implications. Curr Opin Pulm Med 21:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Agustí A, Hogg JC (2019) Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med 381:1248–1256

    Article  PubMed  Google Scholar 

  72. Kent BD, Mitchell PD, Mcnicholas WT (2011) Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J COPD 6:199–208

    Google Scholar 

  73. Barnes PJ (2019) Chronic obstructive pulmonary disease. In: Genomic and precision medicine: infectious and inflammatory disease. N Engl J Med, pp 383–399

    Google Scholar 

  74. Broekman W, Khedoe PPSJ, Schepers K et al (2018) Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax 73:565–574

    Article  PubMed  Google Scholar 

  75. Ferguson GT, Make B (2019) Stable COPD: initial pharmacologic management. In: UpToDate. https://www.uptodate.com/contents/stable-copd-initial-pharmacologic-management

  76. Gordon J, Panos RJ (2010) Inhaled albuterol/salbutamol and ipratropium bromide and their combination in the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Metab Toxicol 6:381–392

    Article  CAS  PubMed  Google Scholar 

  77. Chong J, Karner C, Poole P (2012, 2012) Tiotropium versus long-acting beta-agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev

    Google Scholar 

  78. Rossi A, Polese G (2013) Indacaterol: a comprehensive review. Int J COPD 8:353–363

    Article  CAS  Google Scholar 

  79. Rogliani P, Calzetta L, Braido F et al (2018) LABA/LAMA fixed-dose combinations in patients with COPD: a systematic review. Int J COPD 13:3115–3130

    Article  CAS  Google Scholar 

  80. Malerba M, Foci V, Patrucco F et al (2019) Single inhaler LABA/LAMA for COPD. Front Pharmacol 10:390. https://doi.org/10.3389/fphar.2019.00390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tashkin DP, Strange C (2018) Inhaled corticosteroids for chronic obstructive pulmonary disease: what is their role in therapy? Int J COPD 13:2587–2601

    Article  CAS  Google Scholar 

  82. Caruso M, Morjaria J, Emma R et al (2018) Biologic agents for severe asthma patients: clinical perspectives and implications. Intern Emerg Med 13:155–176

    Article  PubMed  Google Scholar 

  83. Morjaria JB, Rigby AS, Morice AH (2017) Asthma phenotypes: do cough and wheeze predict exacerbations in persistent asthma? Eur Respir J 50:1701366. https://doi.org/10.1183/13993003.01366-2017

    Article  PubMed  Google Scholar 

  84. Papi A, Vestbo J, Fabbri L et al (2018b) Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet 391:1076–1084. https://doi.org/10.1016/S0140-6736(18)30206-X

    Article  CAS  PubMed  Google Scholar 

  85. Meyer KC (2014) Diagnosis and management of interstitial lung disease. Transl Respir Med 2. https://doi.org/10.1186/2213-0802-2-4

  86. King TE (n.d.) Approach to the adult with interstitial lung disease: clinical evaluation. UpToDate

    Google Scholar 

  87. Ryu JH, Daniels CE, Hartman TE, Yi ES (2007) Diagnosis of interstitial lung diseases. Mayo Clin Proc 82:976–986

    Article  PubMed  Google Scholar 

  88. Hutchinson J, Fogarty A, Hubbard R, McKeever T (2015) Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46:795–806. https://doi.org/10.1183/09031936.00185114

    Article  PubMed  Google Scholar 

  89. Antoine M, Mlika M (2020) Interstitial lung disease. StatPearls Publishing

    Google Scholar 

  90. Torrisi SE, Palmucci S, Stefano A et al (2018) Assessment of survival in patients with idiopathic pulmonary fibrosis using quantitative HRCT indexes. Multidiscip Respir Med 13. https://doi.org/10.1186/s40248-018-0155-2

  91. Sauleda J, Núñez B, Sala E, Soriano J (2018) Idiopathic pulmonary fibrosis: epidemiology, natural history, phenotypes. Med Sci 6:110. https://doi.org/10.3390/medsci6040110

    Article  CAS  Google Scholar 

  92. Kalchiem-Dekel O, Galvin J, Burke A et al (2018) Interstitial lung disease and pulmonary fibrosis: a practical approach for general medicine physicians with focus on the medical history. J Clin Med 7:476. https://doi.org/10.3390/jcm7120476

    Article  PubMed Central  Google Scholar 

  93. Devine MS, Garcia CK (2012) Genetic interstitial lung disease. Clin Chest Med 33:95–110

    Article  PubMed  Google Scholar 

  94. Bagnato G, Harari S (2015) Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev 24:102–114

    Article  PubMed  Google Scholar 

  95. Maher TM, Wells AU, Laurent GJ (2007) Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J 30:835–839

    Article  CAS  PubMed  Google Scholar 

  96. Flaherty KR (n.d.) Treatment and prognosis of nonspecific interstitial pneumonia. UpToDate

    Google Scholar 

  97. Kim R, Meyer KC (2008) Review: therapies for interstitial lung disease: past, present and future. Ther Adv Respir Dis 2:319–338

    Article  PubMed  Google Scholar 

  98. Baughman RP, Grutters JC (2015) New treatment strategies for pulmonary sarcoidosis: antimetabolites, biological drugs, and other treatment approaches. Lancet Respir Med 3:813–822

    Article  CAS  PubMed  Google Scholar 

  99. Janahi IA, Rehman A, Baloch NU-A (2018) Corticosteroids and their use in respiratory disorders. In: Corticosteroids. InTech

    Google Scholar 

  100. Knuppel L, Ishikawa Y, Aichler M et al (2017) A novel antifibrotic mechanism of nintedanib and pirfenidone inhibition of collagen fibril assembly. Am J Respir Cell Mol Biol 57:77–90. https://doi.org/10.1165/rcmb.2016-0217OC

    Article  PubMed  Google Scholar 

  101. Richeldi L, Varone F, Bergna M et al (2018) Pharmacological management of progressive-fibrosing interstitial lung diseases: a review of the current evidence. Eur Respir Rev 27

    Google Scholar 

  102. Rivera-Ortega P, Hayton C, Blaikley J et al (2018) Nintedanib in the management of idiopathic pulmonary fibrosis: clinical trial evidence and real-world experience. Ther Adv Respir Dis 12

    Google Scholar 

  103. Wollin L, Wex E, Pautsch A et al (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45:1434–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M et al (2015) Role and new insights of Pirfenidone in fibrotic diseases. Int J Med Sci 12:840–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Margaritopoulos GA, Trachalaki A, Wells AU et al (2018) Pirfenidone improves survival in IPF: results from a real-life study. BMC Pulm Med 18. https://doi.org/10.1186/s12890-018-0736-z

  106. Lancaster LH, de Andrade JA, Zibrak JD et al (2017) Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev 26

    Google Scholar 

  107. Fischer A, Brown KK, Du Bois RM et al (2013) Mycophenolate mofetil improves lung function in connective tissue disease-associated interstitial lung disease. J Rheumatol 40:640–646. https://doi.org/10.3899/jrheum.121043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huapaya JA, Silhan L, Pinal-Fernandez I, et al (2019) Long-term treatment with azathioprine and Mycophenolate Mofetil for myositis-related interstitial lung disease. In: Chest. Elsevier, pp 896–906

    Google Scholar 

  109. Oldham JM, Lee C, Valenzi E et al (2016) Azathioprine response in patients with fibrotic connective tissue disease-associated interstitial lung disease. Respir Med 121:117–122. https://doi.org/10.1016/j.rmed.2016.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yhee JY, Yoon HY, Kim H et al (2017) The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts. Int J Nanomedicine 12:6089–6105. https://doi.org/10.2147/IJN.S138129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Garbuzenko OB, Ivanova V, Kholodovych V et al (2017) Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomed Nanotechnol Biol Med 13:1983–1992. https://doi.org/10.1016/j.nano.2017.04.005

    Article  CAS  Google Scholar 

  112. Dowsett J, Tully O (2012) Cystic fibrosis. In: Encyclopedia of human nutrition. Elsevier, Amsterdam, pp 416–422

    Chapter  Google Scholar 

  113. Massie J (2013) Cystic fibrosis. In: Brenner’s encyclopedia of genetics, 2nd edn. Elsevier, Amsterdam, pp 268–270

    Chapter  Google Scholar 

  114. Cutting GR (2016) Cystic fibrosis. In: International Encyclopedia of public health. Elsevier, Amsterdam, pp 208–210

    Google Scholar 

  115. Lukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol Med 18:81–91

    Article  CAS  PubMed  Google Scholar 

  116. Robert R, Carlile GW, Liao J et al (2010) Correction of the ΔPhe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol Pharmacol 77:922–930. https://doi.org/10.1124/mol.109.062679

    Article  CAS  PubMed  Google Scholar 

  117. Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16:45–56

    Article  CAS  PubMed  Google Scholar 

  118. Veit G, Avramescu RG, Chiang AN et al (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433. https://doi.org/10.1091/mbc.E14-04-0935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marson FAL, Bertuzzo CS, Ribeiro JD (2016) Classification of CFTR mutation classes. Lancet Respir Med 4:e37–e38

    Article  PubMed  Google Scholar 

  120. Katkin JP (n.d.) Cystic fibrosis: clinical manifestations and diagnosis. UpToDate

    Google Scholar 

  121. Balázs A, Mall MA (2019) Mucus obstruction and inflammation in early cystic fibrosis lung disease: emerging role of the IL-1 signaling pathway. Pediatr Pulmonol 54:S5–S12

    Article  PubMed  Google Scholar 

  122. Kurbatova P, Bessonov N, Volpert V et al (2015) Model of mucociliary clearance in cystic fibrosis lungs. J Theor Biol 372:81–88. https://doi.org/10.1016/j.jtbi.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  123. Shukla SD, Walters EH, Simpson JL et al (2020b) Hypoxia-inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology 25:53–63

    Article  PubMed  Google Scholar 

  124. Edmondson C, Davies JC (2016) Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis 7:170–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simon RH (n.d.-a) Cystic fibrosis: overview of the treatment of lung disease. UpToDate

    Google Scholar 

  126. Simon RH (n.d.-b) Cystic fibrosis: antibiotic therapy for chronic pulmonary infection. UpToDate

    Google Scholar 

  127. Ong V, Mei V, Cao L et al (2019) Nanomedicine for cystic fibrosis. SLAS Technol 24:169–180

    Article  CAS  PubMed  Google Scholar 

  128. Velino C, Carella F, Adamiano A et al (2019) Nanomedicine approaches for the pulmonary treatment of cystic fibrosis. Front Bioeng Biotechnol 7:406

    Article  PubMed  PubMed Central  Google Scholar 

  129. Günday Türeli N, Torge A, Juntke J et al (2017) Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 117:363–371. https://doi.org/10.1016/j.ejpb.2017.04.032

    Article  CAS  PubMed  Google Scholar 

  130. Donnelley M, Parsons DW (2018) Gene therapy for cystic fibrosis lung disease: overcoming the barriers to translation to the clinic. Front Pharmacol 9

    Google Scholar 

  131. Rafeeq MM, Murad HAS (2017) Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 15:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yan Z, McCray PB, Engelhardt JF (2019) Advances in gene therapy for cystic fibrosis lung disease. Hum Mol Genet 28:R88–R94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chai Q, Zhang Y, Liu CH (2018) Mycobacterium tuberculosis: an adaptable pathogen associated with multiple human diseases. Front Cell Infect Microbiol 8:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. World Health Organization (2020) Global tuberculosis report 2020. World Health Organization

    Google Scholar 

  135. Bell LCK, Noursadeghi M (2018) Pathogenesis of HIV-1 and mycobacterium tuberculosis co-infection. Nat Rev Microbiol 16:80–90

    Article  CAS  PubMed  Google Scholar 

  136. Heemskerk D, Caws M, Marais B, Farrar J (2015) Clinical manifestations. In: Tuberculosis in adults and children. Springer, Berlin

    Chapter  Google Scholar 

  137. Desalu OO, Adeoti AO, Fadeyi A et al (2013) Awareness of the warning signs, risk factors, and treatment for tuberculosis among urban Nigerians. Tuberc Res Treat 2013:1–5. https://doi.org/10.1155/2013/369717

    Article  Google Scholar 

  138. Adigun R, Singh R (2020) Tuberculosis. StatPearls Publishing

    Google Scholar 

  139. Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3:399–407

    Article  CAS  PubMed  Google Scholar 

  140. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Forrellad MA, Klepp LI, Gioffré A et al (2013) Virulence factors of the mycobacterium tuberculosis complex. Virulence 4:3–66

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhai W, Wu F, Zhang Y et al (2019) The immune escape mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 20

    Google Scholar 

  143. Dheda K, Booth H, Huggett JF et al (2005) Lung remodeling in pulmonary tuberculosis. J Infect Dis 192:1201–1210. https://doi.org/10.1086/444545

    Article  CAS  PubMed  Google Scholar 

  144. WHO (n.d.-a) World Health Organization treatment of tuberculosis guidelines, 4th edn

    Google Scholar 

  145. WHO (n.d.-b) World Health Organization Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis

    Google Scholar 

  146. Sterling TR (n.d.) Treatment of drug-susceptible pulmonary tuberculosis in HIV-uninfected adults. UpToDate

    Google Scholar 

  147. Sotgiu G, Centis R, D’Ambrosio L, Battista Migliori G (2015) Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med 5. https://doi.org/10.1101/cshperspect.a017822

  148. Ramappa V, Aithal GP (2013) Hepatotoxicity related to anti-tuberculosis drugs: mechanisms and management. J Clin Exp Hepatol 3:37–49

    Article  PubMed  Google Scholar 

  149. Dixit R, George J, Sharma AK (2012) Thrombocytopenia due to rifampicin. Lung India 29:90–92

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schaberg T, Rebhan K, Lode H (1996) Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur Respir J 9:2026–2030. https://doi.org/10.1183/09031936.96.09102026

    Article  CAS  PubMed  Google Scholar 

  151. Yakar F, Yildiz N, Yakar A, Kiliçaslan Z (2013) Isoniazid- and rifampicin-induced thrombocytopenia. Multidiscip Respir Med 8:13. https://doi.org/10.1186/2049-6958-8-13

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pontali E, D’Ambrosio L, Centis R et al (2017) Multidrug-resistant tuberculosis and beyond: an updated analysis of the current evidence on bedaquiline. Eur Respir J 49

    Google Scholar 

  153. Schluger NW, Heysell SK, Friedland G (n.d.) Treatment of drug-resistant pulmonary tuberculosis in adults. UpToDate

    Google Scholar 

  154. Diel R, Vandeputte J, De Vries G et al (2014) Costs of tuberculosis disease in the European Union: a systematic analysis and cost calculation. Eur Respir J 43:554–565. https://doi.org/10.1183/09031936.00079413

    Article  PubMed  Google Scholar 

  155. World Health Organization (2016) The shorter MDR-TB regimen

    Google Scholar 

  156. Goyal AK, Garg T, Bhandari S, Rath G (2017) Advancement in pulmonary drug delivery systems for treatment of tuberculosis. In: Nanostructures for drug delivery. Elsevier, Amsterdam, pp 669–695

    Chapter  Google Scholar 

  157. Nasiruddin M, Neyaz MK, Das S (2017) Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat 2017:1–12. https://doi.org/10.1155/2017/4920209

    Article  CAS  Google Scholar 

  158. Pham DD, Fattal E, Tsapis N (2015) Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm 478:517–529

    Article  CAS  PubMed  Google Scholar 

  159. Saifullah B, Hussein MZB, Al Ali SHH (2012) Controlled-release approaches towards the chemotherapy of tuberculosis. Int J Nanomedicine 7:5451–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Estevez H, Palacios A, Gil D et al (2020) Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis. Front Microbiol 11:800. https://doi.org/10.3389/fmicb.2020.00800

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tăbăran AF, Matea CT, Mocan T et al (2020) Silver nanoparticles for the therapy of tuberculosis. Int J Nanomedicine 15:2231–2258

    Article  PubMed  PubMed Central  Google Scholar 

  162. Clemens DL, Lee BY, Xue M et al (2012) Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 56:2535–2545. https://doi.org/10.1128/AAC.06049-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. de Groot PM, Wu CC, Carter BW, Munden RF (2018) The epidemiology of lung cancer. Transl Lung Cancer Res 7:220–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lung Cancer (n.d.) In: Am Cancer Soc. https://www.cancer.org/cancer/lung-cancer.html. Accessed 2 Nov 2020

  165. Furrukh M (2013) Tobacco smoking and lung cancer: perception-changing facts. Sultan Qaboos Univ Med J 13:345–358

    Article  PubMed  PubMed Central  Google Scholar 

  166. O’Keeffe LM, Taylor G, Huxley RR et al (2018) Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open 8

    Google Scholar 

  167. Travis WD, Brambilla E, Burke AP et al (2015) Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol 10:1240–1242

    Article  PubMed  Google Scholar 

  168. Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 7:193. https://doi.org/10.3389/fonc.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

  169. Bradley SH, Kennedy MPT, Neal RD (2019) Recognising lung Cancer in primary care. Adv Ther 36:19–30

    Article  PubMed  Google Scholar 

  170. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285. https://doi.org/10.1097/JTO.0b013e318206a221

    Article  PubMed  PubMed Central  Google Scholar 

  171. Chi A, Komaki R (2010) Treatment of brain metastasis from lung cancer. Cancers (Basel) 2:2100–2137

    Article  CAS  Google Scholar 

  172. Gariani J, Martin SP, Hachulla AL et al (2018) Noninvasive pulmonary nodule characterization using transcutaneous bioconductance: Preliminary results of an observational study. Medicine 97. https://doi.org/10.1097/MD.0000000000011924

  173. Herbst RS, Heymach JV, Lippman SM (2008) Molecular origins of cancer: lung cancer. N Engl J Med 359:1367–1380. https://doi.org/10.1056/NEJMra0802714

    Article  CAS  PubMed  Google Scholar 

  174. Li G, Gao Y, Cui Y et al (2016) Overexpression of CD44 is associated with the occurrence and migration of non-small cell lung cancer. Mol Med Rep 14:3159–3167. https://doi.org/10.3892/mmr.2016.5636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Midthun DE (n.d.) Overview of the initial treatment and prognosis of lung cancer. In: UpToDate. https://www.uptodate.com/contents/overview-of-the-initial-treatment-and-prognosis-of-lung-cancer

  176. Mulvihill MS, Kratz JR, Pham P et al (2013) The role of stem cells in airway repair: implications for the origins of lung cancer. Chin J Cancer 32:71–74

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Latimer KM, Mott TF (2015) Lung cancer: diagnosis, treatment principles, and screening

    Google Scholar 

  178. Bhimji SS, Wallen JM (2018) Cancer, lung, adenocarcinoma. StatPearls Publishing

    Google Scholar 

  179. Purandare NC, Rangarajan V (2015) Imaging of lung cancer: implications on staging and management. Indian J Radiol Imaging 25:109–120. https://doi.org/10.4103/0971-3026.155831

    Article  PubMed  PubMed Central  Google Scholar 

  180. Thomas KW, Gould MK (n.d.) Overview of the initial evaluation, diagnosis, and staging of patients with suspected lung cancer. In: UpToDate. https://www.uptodate.com/contents/overview-of-the-initial-evaluation-diagnosis-and-staging-of-patients-with-suspected-lung-cancer

  181. Silvestri GA, Gonzalez A V., Jantz MA, et al (2013) Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 143. https://doi.org/10.1378/chest.12-2355

  182. Li H, Li J (2016) Effectiveness of palliative care for non-small cell lung cancer. Exp Ther Med 12:2387–2389

    Article  PubMed  PubMed Central  Google Scholar 

  183. Plunkett TA, Chrystal KF, Harper PG (2003) Quality of life and the treatment of advanced lung cancer. Clin Lung Cancer 5:28–32

    Article  PubMed  Google Scholar 

  184. West H, Vallières E, Schild SE (n.d.) Management of stage I and stage II non-small cell lung cancer. In: UpToDate. https://www.uptodate.com/contents/management-of-stage-i-and-stage-ii-non-small-cell-lung-cancer

  185. Shafirstein G, Battoo A, Harris K et al (2016) Photodynamic therapy of non-small cell lung cancer narrative review and future directions. Ann Am Thorac Soc 13:265–275

    Article  PubMed  PubMed Central  Google Scholar 

  186. Liang J, Bi N, Wu S et al (2017) Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial. Ann Oncol 28:777–783. https://doi.org/10.1093/annonc/mdx009

    Article  CAS  PubMed  Google Scholar 

  187. Gray JE, Villegas A, Daniel D et al (2020) Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC—update from PACIFIC. J Thorac Oncol 15:288–293. https://doi.org/10.1016/j.jtho.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  188. Lilenbaum RC (n.d.) Overview of the initial treatment of advanced non-small cell lung cancer. In: UpToDate. https://www.uptodate.com/contents/overview-of-the-initial-treatment-of-advanced-non-small-cell-lung-cancer

  189. Soria J-C, Ohe Y, Vansteenkiste J et al (2018) Osimertinib in untreated EGFR -mutated advanced non–small-cell lung Cancer. N Engl J Med 378:113–125. https://doi.org/10.1056/nejmoa1713137

    Article  CAS  PubMed  Google Scholar 

  190. Rossi A, Di Maio M, Chiodini P et al (2012) Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data. J Clin Oncol 30:1692–1698. https://doi.org/10.1200/JCO.2011.40.4905

    Article  CAS  PubMed  Google Scholar 

  191. Sundstrøm S, Bremnes RM, Kaasa S et al (2002) Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years’ follow-up. J Clin Oncol 20:4665–4672. https://doi.org/10.1200/JCO.2002.12.111

    Article  PubMed  Google Scholar 

  192. Baldini EH, Kalemkerian GP (n.d.) Limited-stage small cell lung cancer: initial management. In: UpToDate. https://www.uptodate.com/contents/limited-stage-small-cell-lung-cancer-initial-management

  193. Corso CD, Rutter CE, Park HS et al (2015) Role of chemoradiotherapy in elderly patients with limited-stage small-cell lung cancer. J Clin Oncol 33:4240–4246. https://doi.org/10.1200/JCO.2015.62.4270

    Article  PubMed  PubMed Central  Google Scholar 

  194. Horn L, Mansfield AS, Szczȩsna A et al (2018) First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 379:2220–2229. https://doi.org/10.1056/NEJMoa1809064

    Article  CAS  PubMed  Google Scholar 

  195. Paz-Ares L, Dvorkin M, Chen Y et al (2019) Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394:1929–1939. https://doi.org/10.1016/S0140-6736(19)32222-6

    Article  CAS  PubMed  Google Scholar 

  196. Rudin CM, Awad MM, Navarro A et al (2020) Pembrolizumab or placebo plus Etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study. J Clin Oncol 38:2369–2379. https://doi.org/10.1200/JCO.20.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Capelletto E, Novello S (2012) Emerging new agents for the management of patients with non-small cell lung cancer. Drugs 72:37–52

    Article  CAS  PubMed  Google Scholar 

  198. Ellis PM, Al-Saleh K (2012) Multitargeted anti-angiogenic agents and NSCLC: clinical update and future directions. Crit Rev Oncol Hematol 84:47–58

    Article  PubMed  Google Scholar 

  199. Haura EB, Cress WD, Chellappan S et al (2004) Antiapoptotic signaling pathways in non-small-cell lung cancer: biology and therapeutic strategies. Clin Lung Cancer 6:113–122. https://doi.org/10.3816/CLC.2004.n.025

    Article  CAS  PubMed  Google Scholar 

  200. Neal JW, Sequist LV (2010) Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh. Curr Treat Options in Oncol 11:36–44

    Article  Google Scholar 

  201. Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3:200–201

    Article  PubMed  PubMed Central  Google Scholar 

  202. Falzon CC, Balabanova A (2017) Phytotherapy: an introduction to herbal medicine. Prim Care Clin Off Pract 44:217–227

    Article  Google Scholar 

  203. Wright GD (2019) Unlocking the potential of natural products in drug discovery. Microb Biotechnol 12:55–57. https://doi.org/10.1111/1751-7915.13351

    Article  CAS  PubMed  Google Scholar 

  204. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ng SW, Chan Y, Chellappan DK et al (2019) Molecular modulators of celastrol as the keystones for its diverse pharmacological activities. Biomed Pharmacother 109:1785–1792

    Article  CAS  PubMed  Google Scholar 

  206. Chan Y, Ng SW, Xin Tan JZ et al (2020b) Emerging therapeutic potential of the iridoid molecule, asperuloside: a snapshot of its underlying molecular mechanisms. Chem Biol Interact 315:108911

    Article  CAS  PubMed  Google Scholar 

  207. Fu L, Chen W, Guo W et al (2013) Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/Caspase signaling to suppress human Cancer cell growth. PLoS One 8:e69240. https://doi.org/10.1371/journal.pone.0069240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Xu D, Wan C, Wang T et al (2015) Berberine attenuates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Int J Clin Exp Med 8:8641–8647

    PubMed  PubMed Central  Google Scholar 

  209. Chakraborty S, Adhikary A, Mazumdar M et al (2014) Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS One 9:e99743. https://doi.org/10.1371/journal.pone.0099743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chauhan PS, Singh DK, Dash D, Singh R (2018) Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine 51:29–38. https://doi.org/10.1016/j.phymed.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  211. Wang A, Wang J, Zhang S et al (2017) Curcumin inhibits the development of non-small cell lung cancer by inhibiting autophagy and apoptosis. Exp Ther Med 14:5075–5080. https://doi.org/10.3892/etm.2017.5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang M, Tang J, Li Y et al (2017) Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved. Chem Biol Interact 277:168–175. https://doi.org/10.1016/j.cbi.2017.09.018

    Article  CAS  PubMed  Google Scholar 

  213. Ryu EK, Kim TH, Jang EJ et al (2015) Wogonin, a plant flavone from Scutellariae radix, attenuated ovalbumin-induced airway inflammation in mouse model of asthma via the suppression of IL-4/STAT6 signaling. J Clin Biochem Nutr 57:105–112. https://doi.org/10.3164/JCBN.15-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li D, Xu D, Wang T et al (2015) Silymarin attenuates airway inflammation induced by cigarette smoke in mice. Inflammation 38:871–878. https://doi.org/10.1007/s10753-014-9996-9

    Article  CAS  PubMed  Google Scholar 

  215. Singh T, Prasad R, Katiyar SK (2016) Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res 6:1287–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Khan WS, Asmatulu R (2013) Nanotechnology emerging trends, markets, and concerns. In: Nanotechnology safety. Elsevier, Amsterdam, pp 1–16

    Google Scholar 

  217. Omlor JA, Nguyen J, Bals R, Dinh QT (2015) Nanotechnology in respiratory medicine. Respir Res 16:64. https://doi.org/10.1186/s12931-015-0223-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bahadori M, Mohammadi F (2012) Nanomedicine for respiratory diseases. Tanaffos 11:18–22

    PubMed  PubMed Central  Google Scholar 

  219. da Silva AL, Cruz FF, Rocco PRM, Morales MM (2017) New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys Rev 9:793–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Yhee J, Im J, Nho R (2016) Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med 5:82. https://doi.org/10.3390/jcm5090082

    Article  CAS  PubMed Central  Google Scholar 

  221. Chan Y, Ng SW, Chellappan DK et al (2020c) Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1765350

  222. Mehta PP, Ghoshal D, Pawar AP et al (2020) Recent advances in inhalable liposomes for treatment of pulmonary diseases: concept to clinical stance. J Drug Deliv Sci Technol 56:101509

    Article  CAS  Google Scholar 

  223. Rudokas M, Najlah M, Alhnan MA, Elhissi A (2016) Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. In: Medical principles and practice. S. Karger AG, pp 60–72

    Google Scholar 

  224. Chakraborty A, Selomulya C (2020) Formulation and role of polymeric and inorganic nanoparticles in respiratory diseases. In: Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Elsevier, Amsterdam, pp 261–280

    Chapter  Google Scholar 

  225. Chan Y, Ng SW, Mehta M et al (2020d) Advanced drug delivery systems can assist in managing influenza virus infection: a hypothesis. Med Hypotheses 144:110298. https://doi.org/10.1016/j.mehy.2020.110298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lim YH, Tiemann KM, Hunstad DA et al (2016) Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip. Rev Nanomed Nanobiotechnol 8:842–871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, Y. et al. (2021). Introduction to Chronic Respiratory Diseases: A Pressing Need for Novel Therapeutic Approaches. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_2

Download citation

Publish with us

Policies and ethics