Skip to main content

Chronic Obstructive Pulmonary Disease: Molecular Basis of Pathogenesis and Targeted Therapeutic Approaches

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Chronic obstructive pulmonary disease (COPD) is a heterogeneous inflammatory disorder that is strongly associated with cigarette smoking. Its prominent symptoms include chronic bronchitis, dyspnea, and emphysema. Goblet cell-mediated mucus hypersecretion and chronic inflammation in the respiratory tract lead to the congestion and narrowing of small airways and alveolar wall destruction (emphysema). Increased number of alveolar macrophages, cytotoxic T lymphocyte, and neutrophils along with upregulated multiple inflammatory mediators (cytokines, chemokines, growth factors, etc.) cause the exaggerated inflammatory reaction. Sustained oxidative stress additionally amplifies this inflammatory cascade. Moreover, increased elastolysis by several elastolytic enzymes, including serine, proteases, cathepsins, and matrix metalloproteinases, causes the alveolar wall destruction. Besides this, various genetic and epigenetic factors are also responsible for the early onset of COPD. This inflammatory disorder, in marked contrast to asthma, is resistant to corticosteroid therapy. Different physiological activities along with bronchodilator therapy, antioxidant intake, and oxygen supplementation can effectively subdue the disease outcome and improve the quality of life of COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BTVA:

Bronchoscopic thermal vapour ablation

CHARGE:

Cohorts for Heart and Aging Research in Genomic Epidemiology

DEFB1:

Defensin beta 1

ENA-78:

Epithelial neutrophil activating protein of 78 kDa

G-CSF:

Granulocyte colony-stimulating factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GRO-α:

Growth-related oncoprotein

HAT:

Histone acetylate

HDAC:

Histone deacetylase

IL:

Interleukin

IP-10:

Interferon gamma-induced protein-10

I-TAC:

Interferon-inducible T-cell alpha-chemoattractant

LTB-4:

Leukotriene B4

LVR:

Lung volume reduction

MCP-1:

Monocyte chemoattractant protein-1

MIG:

Monokine induced by gamma interferon

NE:

Neutrophil elastase

PCNA:

Proliferative cell nuclear antigen

PS:

Phosphatidylserine

SOD:

Superoxide dismutase

TLD:

Targeted lung denervation

TNF:

Tumour necrosis factor

References

  1. Rabe KF, Watz H (2017) Chronic obstructive pulmonary disease. Lancet 389(10082):1931–1940

    Article  PubMed  Google Scholar 

  2. Chapman KR et al (2015) Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet 386(9991):360–368

    Article  CAS  PubMed  Google Scholar 

  3. Wedzicha JA et al (2016) Indacaterol–glycopyrronium versus salmeterol–fluticasone for COPD. N Engl J Med 374(23):2222–2234

    Article  CAS  PubMed  Google Scholar 

  4. Pascoe SJ et al (2016) A phase III randomised controlled trial of single-dose triple therapy in COPD: the IMPACT protocol. Eur Respir J 48(2):320–330

    Article  CAS  PubMed  Google Scholar 

  5. Vos T et al (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602

    Article  Google Scholar 

  6. Adeloye D et al (2015) Global and regional estimates of COPD prevalence: systematic review and meta–analysis. J Glob Health 5(2)

    Google Scholar 

  7. Viegi G et al (2001) Epidemiology of chronic obstructive pulmonary disease (COPD). Respiration 68(1):4–19

    Article  CAS  PubMed  Google Scholar 

  8. Anthonisen NR et al (2005) The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 142(4):233–239

    Article  PubMed  Google Scholar 

  9. Calverley PM et al (2007) Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 356(8):775–789

    Article  CAS  PubMed  Google Scholar 

  10. Forouzanfar MH et al (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1659–1724

    Article  Google Scholar 

  11. Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. Lancet 374(9691):733–743

    Article  PubMed  Google Scholar 

  12. Mannino DM, Buist AS (2007) Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589):765–773

    Article  PubMed  Google Scholar 

  13. World Health Organization (2016) Global Health Observatory (GHO) data: prevalence of insufficient physical activity. WHO, Geneva. http://www.who.int/gho/ncd/risk_factors/physical_activity_text/en

  14. Retamales I et al (2001) Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med 164(3):469–473

    Article  CAS  PubMed  Google Scholar 

  15. Keatings VM et al (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153(2):530–534

    Article  CAS  PubMed  Google Scholar 

  16. Lacoste J-Y et al (1993) Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 92(4):537–548

    Article  CAS  PubMed  Google Scholar 

  17. Finkelstein R et al (1995) Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med 152(5):1666–1672

    Article  CAS  PubMed  Google Scholar 

  18. Sommerhoff C et al (1990) Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest 85(3):682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Witko-Sarsat V et al (1999) Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum. Am J Respir Cell Mol Biol 20(4):729–736

    Article  CAS  PubMed  Google Scholar 

  20. Di Stefano A et al (1994) Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med 149(3):803–810

    Article  PubMed  Google Scholar 

  21. Terashima T et al (1997) Phagocytosis of small carbon particles (PM10) by alveolar macrophages stimulates the release of polymorphonuclear leukocytes from bone marrow. Am J Respir Crit Care Med 155(4):1441–1447

    Article  CAS  PubMed  Google Scholar 

  22. Stănescu D et al (1996) Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 51(3):267–271

    Article  PubMed  PubMed Central  Google Scholar 

  23. Di Stefano A et al (1998) Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 158(4):1277–1285

    Article  PubMed  Google Scholar 

  24. Richards GA et al (1989) Spirometric abnormalities in young smokers correlate with increased chemiluminescence responses of activated blood phagocytes. Am Rev Respir Dis 139(1):181–187

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro SD (1999) The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(supplement_1):S29–S32

    Article  CAS  PubMed  Google Scholar 

  26. Barnes PJ (2002) Current and future therapies for airway mucus hypersecretion. In Novartis Found Symp. Wiley Online Library

    Google Scholar 

  27. de Boer WI et al (2000) Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol 190(5):619–626

    Article  PubMed  Google Scholar 

  28. Russell RE et al (2002) Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Phys Lung Cell Mol Phys 283(4):L867–L873

    CAS  Google Scholar 

  29. Punturieri A et al (2000) Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K–deficient human macrophages. J Exp Med 192(6):789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Traves S et al (2002) Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD. Thorax 57(7):590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saetta M et al (2002) Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 165(10):1404–1409

    Article  PubMed  Google Scholar 

  32. Tomita K et al (2002) Increased p21CIP1/WAF1 and B cell lymphoma leukemia-xL expression and reduced apoptosis in alveolar macrophages from smokers. Am J Respir Crit Care Med 166(5):724–731

    Article  PubMed  Google Scholar 

  33. Fadok VA et al (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405(6782):85–90

    Article  CAS  PubMed  Google Scholar 

  34. Vandivier RW et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109(5):661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Majo J, Ghezzo H, Cosio M (2001) Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 17(5):946–953

    Article  CAS  PubMed  Google Scholar 

  36. Saetta M et al (1999) CD8+ ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(2):711–717

    Article  CAS  PubMed  Google Scholar 

  37. O’Shaughnessy TC et al (1997) Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 155(3):852–857

    Article  PubMed  Google Scholar 

  38. Hill AT et al (2000) Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med 109(4):288–295

    Article  CAS  PubMed  Google Scholar 

  39. Cosio MG, Majo J, Cosio MG (2002) Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest 121(5):160S–165S

    Article  CAS  PubMed  Google Scholar 

  40. Turato G, Zuin R, Saetta M (2001) Pathogenesis and pathology of COPD. Respiration 68(2):117–128

    Article  CAS  PubMed  Google Scholar 

  41. Papi A et al (2000) Partial reversibility of airflow limitation and increased exhaled NO and sputum eosinophilia in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162(5):1773–1777

    Article  CAS  PubMed  Google Scholar 

  42. Saetta M et al (1994) Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med 150(6):1646–1652

    Article  CAS  PubMed  Google Scholar 

  43. Keatings VM, Barnes PJ (1997) Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 155(2):449–453

    Article  CAS  PubMed  Google Scholar 

  44. Liu H et al (1999) Neutrophil elastase and elastase-rich cystic fibrosis sputum degranulate human eosinophils in vitro. Am J Phys Lung Cell Mol Phys 276(1):L28–L34

    CAS  Google Scholar 

  45. Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18(1):767–811

    Article  CAS  PubMed  Google Scholar 

  46. Holt PG, Stumbles PA (2000) Regulation of immunologic homeostasis in peripheral tissues by dendritic cells: the respiratory tract as a paradigm. J Allergy Clin Immunol 105(3):421–429

    Article  CAS  PubMed  Google Scholar 

  47. Huang Q et al (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294(5543):870–875

    Article  CAS  PubMed  Google Scholar 

  48. Soler P et al (1989) Cigarette smoking-induced changes in the number and differentiated state of pulmonary dendritic cells/Langerhans cells. Am J Respir Crit Care Med 139(5):1112–1117

    CAS  Google Scholar 

  49. D’Hulst A, Vermeulen K, Pauwels R (2002) Cigarette smoke exposure causes increase in pulmonary dendritic cells. Am J Respir Crit Care Med 164:A604

    Google Scholar 

  50. Mio T et al (1997) Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med 155(5):1770–1776

    Article  CAS  PubMed  Google Scholar 

  51. Hellermann GR et al (2002) Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells. Respir Res 3(1):1–8

    Article  Google Scholar 

  52. Floreani AA et al (2003) Smoke and C5a induce airway epithelial intercellular adhesion molecule-1 and cell adhesion. Am J Respir Cell Mol Biol 29(4):472–482

    Article  CAS  PubMed  Google Scholar 

  53. Takizawa H et al (2001) Increased expression of transforming growth factor-β 1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med 163(6):1476–1483

    Article  CAS  PubMed  Google Scholar 

  54. Adler KB, Li Y (2001) Airway epithelium and mucus: intracellular signaling pathways for gene expression and secretion. Am J Respir Cell Mol Biol 25(4):397–400

    Article  CAS  PubMed  Google Scholar 

  55. Aarbiou J, Rabe KF, Hiemstra PS (2002) Role of defensins in inflammatory lung disease. Ann Med 34(2):96–101

    Article  CAS  PubMed  Google Scholar 

  56. Pilette C et al (2001) Lung mucosal immunity: immunoglobulin—a revisited. Eur Respir J 18(3):571–588

    Article  CAS  PubMed  Google Scholar 

  57. Demoly P et al (1994) Cell proliferation in the bronchial mucosa of asthmatics and chronic bronchitics. Am J Respir Crit Care Med 150(1):214–217

    Article  CAS  PubMed  Google Scholar 

  58. Franklin WA et al (2002) Epidermal growth factor receptor family in lung cancer and premalignancy. In: Seminars in oncology. Elsevier

    Google Scholar 

  59. Repine JE et al (1997) Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 156(2):341–357

    Article  CAS  PubMed  Google Scholar 

  60. MacNee W (2001) Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 429(1–3):195–207

    Article  CAS  PubMed  Google Scholar 

  61. Henricks PA, Nijkamp FP (2001) Reactive oxygen species as mediators in asthma. Pulm Pharmacol Ther 14(6):409–421

    Article  CAS  PubMed  Google Scholar 

  62. Das J et al (2009) Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187(3):201–210

    Article  CAS  PubMed  Google Scholar 

  63. Manna P, Sinha M, Sil PC (2008) Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol 82(3):137–149

    Article  CAS  PubMed  Google Scholar 

  64. Manna P, Sinha M, Sil PC (2009) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36(3):417

    Article  CAS  PubMed  Google Scholar 

  65. Kawikova I et al (1996) 8-Epi-PGF2 alpha, a novel noncyclooxygenase-derived prostaglandin, constricts airways in vitro. American journal of respiratory and critical care medicine. 153(2):590–596

    Google Scholar 

  66. Janssen L (2001) Isoprostanes: an overview and putative roles in pulmonary pathophysiology. Am J Phys Lung Cell Mol Phys 280(6):L1067–L1082

    CAS  Google Scholar 

  67. Van Der Vliet A et al (1999) Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am J Respir Crit Care Med 160(1):1–9

    Article  PubMed  Google Scholar 

  68. Cantin AM et al (1990) Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest 86(3):962–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Comhair SA, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Phys Lung Cell Mol Phys 283(2):L246–L255

    CAS  Google Scholar 

  70. Adcock IM et al (1994) Oxidative stress induces NFκB DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun 199(3):1518–1524

    Article  CAS  PubMed  Google Scholar 

  71. Rusznak C et al (1996) Ozone-induced mediator release from human bronchial epithelial cells in vitro and the influence of nedocromil sodium. Eur Respir J 9(11):2298–2305

    Article  CAS  PubMed  Google Scholar 

  72. Tomita K, Barnes P, Adcock I (2003) The effect of oxidative stress on histone acetylation and IL-8 release. Biochem Biophys Res Commun 301(2):572–577

    Article  CAS  PubMed  Google Scholar 

  73. Rahman I (2003) Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol 36(1):95–109

    CAS  PubMed  Google Scholar 

  74. Taggart C et al (2000) Oxidation of either methionine 351 or methionine 358 in α1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem 275(35):27258–27265

    Article  CAS  PubMed  Google Scholar 

  75. Kasahara Y et al (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106(11):1311–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ogura M, Kitamura M (1998) Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. J Immunol 161(7):3569–3574

    Article  CAS  PubMed  Google Scholar 

  77. Pryor WA, Stone K (1993) Oxidants in cigarette smoke radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite A. Ann N Y Acad Sci 686(1):12–27

    Article  CAS  PubMed  Google Scholar 

  78. Praticò D et al (1998) Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2 α-III, an index of oxidant stress. Am J Respir Crit Care Med 158(6):1709–1714

    Article  PubMed  Google Scholar 

  79. Rahman I et al (1996) Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 154(4):1055–1060

    Article  CAS  PubMed  Google Scholar 

  80. Rahman I et al (2002) 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(4):490–495

    Article  PubMed  Google Scholar 

  81. Group, L.H.S.R (2000) Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med 343(26):1902–1909

    Article  Google Scholar 

  82. Ito K et al (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15(6):1110–1112

    Article  CAS  PubMed  Google Scholar 

  83. Ito K, Barnes PJ, Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20(18):6891–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vestbo J et al (1999) Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 353(9167):1819–1823

    Article  CAS  PubMed  Google Scholar 

  85. Pauwels RA et al (1999) Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med 340(25):1948–1953

    Article  CAS  PubMed  Google Scholar 

  86. Burge PS et al (2000) Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ 320(7245):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ingebrigtsen T et al (2010) Genetic influences on chronic obstructive pulmonary disease–a twin study. Respir Med 104(12):1890–1895

    Article  PubMed  Google Scholar 

  88. McCloskey SC et al (2001) Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am J Respir Crit Care Med 164(8):1419–1424

    Article  CAS  PubMed  Google Scholar 

  89. Silverman EK et al (1998) Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease: risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med 157(6):1770–1778

    Article  CAS  PubMed  Google Scholar 

  90. Zorzetto M et al (2008) SERPINA1 gene variants in individuals from the general population with reduced α1-antitrypsin concentrations. Clin Chem 54(8):1331–1338

    Article  CAS  PubMed  Google Scholar 

  91. Kelleher CM et al (2005) A functional mutation in the terminal exon of elastin in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 33(4):355–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Repapi E et al (2010) Genome-wide association study identifies five loci associated with lung function. Nat Genet 42(1):36–44

    Article  CAS  PubMed  Google Scholar 

  93. Artigas MS et al (2011) Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet 43(11):1082–1090

    Article  CAS  PubMed Central  Google Scholar 

  94. Khan SN, Khan AU (2010) Role of histone acetylation in cell physiology and diseases: an update. Clin Chim Acta 411(19–20):1401–1411

    Article  CAS  PubMed  Google Scholar 

  95. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13(3):263–273

    Article  CAS  PubMed  Google Scholar 

  97. Yang S-R et al (2006) Cigarette smoke induces proinflammatory cytokine release by activation of NF-κB and posttranslational modifications of histone deacetylase in macrophages. Am J Phys Lung Cell Mol Phys 291(1):L46–L57

    CAS  Google Scholar 

  98. Alashkar Alhamwe B et al (2020) Epigenetic Regulation of Airway Epithelium Immune Functions in Asthma. Front Immunol 11:1747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sundar IK et al (2012) Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κB-dependent genes. PLoS One 7(2):e31378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barnes PJ (2005) Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Expert Opin Ther Targets 9(6):1111–1121

    Article  CAS  PubMed  Google Scholar 

  101. Garten RJ et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science 325(5937):197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ito T et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci 98(8):4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Szulakowski P et al (2006) The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174(1):41–50

    Article  CAS  PubMed  Google Scholar 

  104. Ito K et al (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352(19):1967–1976

    Article  CAS  PubMed  Google Scholar 

  105. Andresen E et al (2011) Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One 6(7):e21898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morrow JD et al (2016) DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics 11(10):730–739

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yuan C et al (2017) Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 12:1385–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stockley RA (2001) Proteases and antiproteases. In: Novartis Found Symp. Wiley Online Library

    Google Scholar 

  109. Senior RM et al (1977) The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis 126(3):469–475

    Article  Google Scholar 

  110. Voynow JA et al (1999) Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Phys Lung Cell Mol Phys 276(5):L835–L843

    CAS  Google Scholar 

  111. Fischer BM, Voynow JA (2002) Neutrophil elastase induces MUC 5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am J Respir Cell Mol Biol 26(4):447–452

    Article  CAS  PubMed  Google Scholar 

  112. Luisetti M et al (1996) MR889, a neutrophil elastase inhibitor, in patients with chronic obstructive pulmonary disease: a double-blind, randomized, placebo-controlled clinical trial. Eur Respir J 9(7):1482–1486

    Article  CAS  PubMed  Google Scholar 

  113. Goswami SK, Kivity S, Marom Z (1990) Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis 141(72–78):1

    Google Scholar 

  114. Turk B, Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20(17):4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chapman HA, Riese RJ, Shi G-P (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59(1):63–88

    Article  CAS  PubMed  Google Scholar 

  116. Wang Z et al (2000) Interferon γ induction of pulmonary emphysema in the adult murine lung. J Exp Med 192(11):1587–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zheng T et al (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase–and cathepsin-dependent emphysema. J Clin Invest 106(9):1081–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Takeyabu K et al (1998) Cysteine proteinases and cystatin C in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Eur Respir J 12(5):1033–1039

    Article  CAS  PubMed  Google Scholar 

  119. Shapiro SD, Senior RM (1999) Matrix metalloproteinases: matrix degradation and more. Am J Respir Cell Mol Biol 20(6):1100–1102

    Article  CAS  PubMed  Google Scholar 

  120. Finlay GA et al (1997) Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 156(1):240–247

    Article  CAS  PubMed  Google Scholar 

  121. Betsuyaku T et al (1999) Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 159(6):1985–1991

    Article  CAS  PubMed  Google Scholar 

  122. Culpitt SV et al (1999) Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(5):1635–1639

    Article  CAS  PubMed  Google Scholar 

  123. Imai K et al (2001) Human collagenase (matrix metalloproteinase-1) expression in the lungs of patients with emphysema. Am J Respir Crit Care Med 163(3):786–791

    Article  CAS  PubMed  Google Scholar 

  124. Hautamaki RD et al (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277(5334):2002–2004

    Article  CAS  PubMed  Google Scholar 

  125. Morris DG et al (2003) Loss of integrin αvβ6-mediated TGF-β activation causes Mmp12-dependent emphysema. Nature 422(6928):169–173

    Article  CAS  PubMed  Google Scholar 

  126. Lanone S et al (2002) Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13–induced inflammation and remodeling. J Clin Invest 110(4):463–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    Article  PubMed  PubMed Central  Google Scholar 

  128. Dallas SL et al (2002) Proteolysis of latent-TGFβ binding protein-1 by osteoclasts-a cellular mechanism for release of TGFβ from bone matrix. J Biol Chem 277(24):21352–21360

    Article  CAS  PubMed  Google Scholar 

  129. Anthonisen NR et al (2005) The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 142(4):233–239

    Article  PubMed  Google Scholar 

  130. Scanlon PD et al (2000) Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med 161(2 Pt 1):381–390

    Article  CAS  PubMed  Google Scholar 

  131. Rooney CP et al (2001) Anti-proteinase 3 antibody activation of neutrophils can be inhibited by alpha1-antitrypsin. Am J Respir Cell Mol Biol 24(6):747–754

    Article  CAS  PubMed  Google Scholar 

  132. Wilkes S (2008) The use of bupropion SR in cigarette smoking cessation. Int J Chron Obstruct Pulmon Dis 3(1):45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nomikos GG et al (1992) Effects of chronic bupropion on interstitial concentrations of dopamine in rat nucleus accumbens and striatum. Neuropsychopharmacology 7(1):7–14

    CAS  PubMed  Google Scholar 

  134. Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Spruit MA et al (2015) Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 192(8):924–933

    Article  PubMed  Google Scholar 

  136. Beeh KM et al (2014) Aclidinium improves exercise endurance, dyspnea, lung hyperinflation, and physical activity in patients with COPD: a randomized, placebo-controlled, crossover trial. BMC Pulm Med 14(1):209

    Article  PubMed  PubMed Central  Google Scholar 

  137. Romieu I et al (2009) Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women. Am J Respir Crit Care Med 180(7):649–656

    Article  PubMed  Google Scholar 

  138. Vila-Corcoles A et al (2012) Clinical effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumonia in patients with chronic pulmonary diseases: a matched case-control study. Hum Vaccin Immunother 8(5):639–644

    Article  PubMed  Google Scholar 

  139. Stanbrook MB (2017) In COPD, injectable polyvalent pneumococcal vaccines reduce risk for community-acquired pneumonia. Ann Intern Med 166(10):JC52–JC52

    Article  PubMed  Google Scholar 

  140. Garcia-Aymerich J et al (2006) Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. Thorax 61(9):772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Waschki B et al (2011) Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest 140(2):331–342

    Article  CAS  PubMed  Google Scholar 

  142. Rochester CL et al (2015) An official American Thoracic Society/European Respiratory Society policy statement: enhancing implementation, use, and delivery of pulmonary rehabilitation. Am J Respir Crit Care Med 192(11):1373–1386

    Article  PubMed  Google Scholar 

  143. Demeyer H et al (2016) The minimal important difference in physical activity in patients with COPD. PLoS One 11(4):e0154587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Malerba M et al (2019) Single Inhaler LABA/LAMA for COPD. Front Pharmacol 10:390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rossi A, Khirani S, Cazzola M (2008) Long-acting beta2-agonists (LABA) in chronic obstructive pulmonary disease: efficacy and safety. Int J Chron Obstruct Pulmon Dis 3(4):521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vogelmeier C et al (2011) Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med 364(12):1093–1103

    Article  CAS  PubMed  Google Scholar 

  147. Decramer ML et al (2013) Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. Lancet Respir Med 1(7):524–533

    Article  CAS  PubMed  Google Scholar 

  148. Rabe KF et al (2014) Effect of ADRB2 polymorphisms on the efficacy of salmeterol and tiotropium in preventing COPD exacerbations: a prespecified substudy of the POET-COPD trial. Lancet Respir Med 2(1):44–53

    Article  CAS  PubMed  Google Scholar 

  149. Rodrigo GJ et al (2017) LABA/LAMA combinations versus LAMA monotherapy or LABA/ICS in COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 12:907–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wedzicha JA et al (2013) Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med 1(3):199–209

    Article  CAS  PubMed  Google Scholar 

  151. Singh D et al (2016) Single inhaler triple therapy versus inhaled corticosteroid plus long-acting β2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. Lancet 388(10048):963–973

    Article  CAS  PubMed  Google Scholar 

  152. Pascoe SJ et al (2016) A phase III randomised controlled trial of single-dose triple therapy in COPD: the IMPACT protocol. Eur Respir J 48(2):320–330

    Article  CAS  PubMed  Google Scholar 

  153. Lahousse L et al (2016) Cardiac effects of current treatments of chronic obstructive pulmonary disease. Lancet Respir Med 4(2):149–164

    Article  CAS  PubMed  Google Scholar 

  154. Vestbo J et al (2016) Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled trial. Lancet 387(10030):1817–1826

    Article  CAS  PubMed  Google Scholar 

  155. Finney L et al (2014) Inhaled corticosteroids and pneumonia in chronic obstructive pulmonary disease. Lancet Respir Med 2(11):919–932

    Article  CAS  PubMed  Google Scholar 

  156. Crim C et al (2009) Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J 34(3):641–647

    Article  CAS  PubMed  Google Scholar 

  157. Pavord ID et al (2016) Blood eosinophil count and pneumonia risk in patients with chronic obstructive pulmonary disease: a patient-level meta-analysis. Lancet Respir Med 4(9):731–741

    Article  PubMed  Google Scholar 

  158. (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544

    Google Scholar 

  159. Kawamatawong T (2017) Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis 9(4):1144–1154

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sun XJ, He ZY (2019) Macrolides for treatment of chronic obstructive pulmonary disease. Chin Med J 132(11):1261–1263

    Article  PubMed  PubMed Central  Google Scholar 

  161. Calverley PM et al (2007) Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 356(8):775–789

    Article  CAS  PubMed  Google Scholar 

  162. Albert RK et al (2011) Azithromycin for prevention of exacerbations of COPD. N Engl J Med 365(8):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Han MK et al (2014) Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am J Respir Crit Care Med 189(12):1503–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kanoh S, Rubin BK (2010) Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 23(3):590–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vogelmeier CF et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 195(5):557–582

    Article  CAS  PubMed  Google Scholar 

  166. Barnes PJ, Hansel TT (2004) Prospects for new drugs for chronic obstructive pulmonary disease. Lancet 364(9438):985–996

    Article  CAS  PubMed  Google Scholar 

  167. Watz H et al (2014) Efficacy and safety of the p38 MAPK inhibitor losmapimod for patients with chronic obstructive pulmonary disease: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med 2(1):63–72

    Article  CAS  PubMed  Google Scholar 

  168. Brightling CE et al (2014) Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med 2(11):891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rennard SI et al (2015) CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 191(9):1001–1011

    Article  CAS  PubMed  Google Scholar 

  170. Mahalanobish S et al (2020) Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol 144:111588

    Article  CAS  PubMed  Google Scholar 

  171. Zheng JP et al (2008) Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet 371(9629):2013–2018

    Article  CAS  PubMed  Google Scholar 

  172. Tse HN et al (2013) High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest 144(1):106–118

    Article  CAS  PubMed  Google Scholar 

  173. Wu W et al (2011) Cigarette smoke extract suppresses the RIG-I-initiated innate immune response to influenza virus in the human lung. Am J Physiol Lung Cell Mol Physiol 300(6):L821–L830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Malhotra D et al (2011) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 121(11):4289–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Meja KK et al (2008) Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol 39(3):312–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Suzuki M et al (2009) Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 296(4):L614–L623

    Article  CAS  PubMed  Google Scholar 

  177. Knobloch J et al (2011) Resveratrol impairs the release of steroid-resistant cytokines from bacterial endotoxin-exposed alveolar macrophages in chronic obstructive pulmonary disease. Basic Clin Pharmacol Toxicol 109(2):138–143

    Article  CAS  PubMed  Google Scholar 

  178. Walda IC et al (2002) Diet and 20-year chronic obstructive pulmonary disease mortality in middle-aged men from three European countries. Eur J Clin Nutr 56(7):638–643

    Article  CAS  PubMed  Google Scholar 

  179. Schols A (2013) Nutrition as a metabolic modulator in COPD. Chest 144(4):1340–1345

    Article  CAS  PubMed  Google Scholar 

  180. Omenn GS et al (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334(18):1150–1155

    Article  CAS  PubMed  Google Scholar 

  181. Omenn GS et al (1996) Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 88(21):1550–1559

    Article  CAS  PubMed  Google Scholar 

  182. Goodman GE et al (2004) The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst 96(23):1743–1750

    Article  CAS  PubMed  Google Scholar 

  183. Wu TC et al (2007) Vitamin E and vitamin C supplementation in patients with chronic obstructive pulmonary disease. Int J Vitam Nutr Res 77(4):272–279

    Article  CAS  PubMed  Google Scholar 

  184. Rossman MJ et al (2013) Ascorbate infusion increases skeletal muscle fatigue resistance in patients with chronic obstructive pulmonary disease. Am J Physiol Regul Integr Comp Physiol 305(10):R1163–R1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lehouck A et al (2012) High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 156(2):105–114

    Article  PubMed  Google Scholar 

  186. Tsiligianni IG, van der Molen T (2010) A systematic review of the role of vitamin insufficiencies and supplementation in COPD. Respir Res 11(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Darwiche K, Aigner C (2018) Clinical management of lung volume reduction in end stage emphysema patients. J Thorac Dis 10(Suppl 23):S2732–s2737

    Article  PubMed  PubMed Central  Google Scholar 

  188. Shah PL et al (2017) Lung volume reduction for emphysema. Lancet Respir Med 5(2):147–156

    Article  PubMed  Google Scholar 

  189. Herth FJ et al (2016) Endoscopic lung volume reduction: an expert panel recommendation. Respiration 91(3):241–250

    Article  PubMed  Google Scholar 

  190. Chapman KR et al (2015) Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet 386(9991):360–368

    Article  CAS  PubMed  Google Scholar 

  191. Wedzicha JA et al (2016) Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. N Engl J Med 374(23):2222–2234

    Article  CAS  PubMed  Google Scholar 

  192. (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602

    Google Scholar 

  193. Adeloye D et al (2015) Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health 5(2):020415

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lamprecht B et al (2015) Determinants of underdiagnosis of COPD in national and international surveys. Chest 148(4):971–985

    Article  PubMed  Google Scholar 

  195. Köhnlein T et al (2014) Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2(9):698–705

    Article  PubMed  Google Scholar 

  196. Stone IS et al (2016) Lung deflation and cardiovascular structure and function in chronic obstructive pulmonary disease. A randomized controlled trial. Am J Respir Crit Care Med 193(7):717–726

    Article  PubMed  PubMed Central  Google Scholar 

  197. White WB et al (2013) Cardiovascular safety in patients receiving roflumilast for the treatment of COPD. Chest 144(3):758–765

    Article  CAS  PubMed  Google Scholar 

  198. Wouters EF et al (2012) Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J Clin Endocrinol Metab 97(9):E1720–E1725

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahalanobish, S., Dutta, S., Sil, P.C. (2021). Chronic Obstructive Pulmonary Disease: Molecular Basis of Pathogenesis and Targeted Therapeutic Approaches. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_7

Download citation

Publish with us

Policies and ethics