Skip to main content

Targeting Molecular and Cellular Mechanisms in Tuberculosis

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

The major global problems are the prevalence rate of Mycobacterium tuberculosis (Mtb) and processes of resistance against continuing therapy. The shortage of possible drug candidates and consumer recognition along with unhygienic procedures are the key explanations for MDR, TDR and XDR Mtb strains in rapid emergence. Mtb’s powerful molecular structure and drug resistance pathways, demands expertise to develop new anti-tuberculosis therapies. Eventually, the synthesis of modern genomic knowledge of drug resistance mechanisms in Mtb will offer a new path for combinatorial drug development and provide considerable support for highly successful anti-tubercular drugs.

After a time of relative lack of interest in cell envelope targeting inhibitors, the immediate necessity of new therapeutic approaches has motivated renewed work towards a deeper understanding of the cell envelope, its biogenesis and function during Mtb’s stages of proliferation, survival and reactivation. As a result, new appealing goals for drugs were identified and followed, with varying effects, in the form of target-based scanning and other target-based strategies. The challenge of detecting compounds whose inhibitory action against filtered targets translated into entire Mtb cell activity prompted several field investigators to go back to cell-based screens. This strategy leads to several new groups of inhibitors being identified, and some of those are now in preclinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PEM et al (2014) Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58:470–480

    Article  Google Scholar 

  2. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR et al (2014) REMox TB consortium. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371:1577–1587

    Article  Google Scholar 

  3. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  Google Scholar 

  4. Sukuru SC, Jenkins JL, Beckwith RE, Scheiber J, Bender A, Mikhailov D et al (2009) Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 14:690–699

    Article  CAS  Google Scholar 

  5. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  Google Scholar 

  6. https://www.nap.edu/read/9144/chapter/4 (Last assessed on 08 September 2020)

  7. http://www.tbonline.info/diagnostics/ (Last assessed on 08 September 2020)

  8. https://www.treatmentactiongroup.org/wp-content/uploads/2017/04/TB-Diagnostics-Guide.pdf (Last assessed on 08 September 2020)

  9. Goswam A, Chakraborty U, Bhattacharya B, Pal NK (2016) Association of generation time with anti-tubercular drug(s) resistance pattern of Mycobacterium tuberculosis isolates among treatment failure pulmonary tuberculosis patients. Asian J Pharm Clin Res 9(1):258–261

    Google Scholar 

  10. Nguyen L (2016) Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 90(7):1585–1604

    Article  CAS  Google Scholar 

  11. Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2(3):164–168

    Article  CAS  Google Scholar 

  12. Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62:1220–1227

    Article  CAS  Google Scholar 

  13. Sensi P (1983) History of the development of rifampin. Rev Infect Dis 5:S402–S406

    Article  CAS  Google Scholar 

  14. Campbell EA, Korzheva N, Mustaev A et al (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912

    Article  CAS  Google Scholar 

  15. Pourakbari B, Mamishi S, Mohammadzadeh M, Mahmoudi S (2016) First-line anti-tubercular drug resistance of Mycobacterium tuberculosis in IRAN: a systematic review. Front Microbiol 28:1139

    Google Scholar 

  16. Forbes M, Kuck NA, Peets EA (1962) Mode of action of ethambutol. J Bacteriol 84:1099–1103

    Article  CAS  Google Scholar 

  17. Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95:461–469

    CAS  PubMed  Google Scholar 

  18. Zhang S, Che J, Shi W et al (2013) Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect e34:2

    Google Scholar 

  19. Honore N, Cole ST (1994) Streptomycin resistance in mycobacteria. Antimicrob Agent Chemother 38:238–242

    Article  CAS  Google Scholar 

  20. Dookie N, Rambaran S, Padayatchi N et al (2018) Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 73:1138–1151

    Article  CAS  Google Scholar 

  21. Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H (2011) Reduction of clofazimine by mycobacterial type 2 NADH: quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286:10276–10287

    Article  CAS  Google Scholar 

  22. Grosset JH, Tyagi S, Almeida DV, Converse PJ, Li SY, Ammerman NC et al (2013) Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 188:608–612

    Article  CAS  Google Scholar 

  23. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE III (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174–40184

    Article  CAS  Google Scholar 

  24. Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D, McColm AA, Duncan K, Lonsdale JT, Rubin H (2005) Inhibitors of type II NADH: menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci U S A 102:4548–4553

    Article  CAS  Google Scholar 

  25. Kristiansen JE, Dastidar SG, Palchoudhuri S, Roy DS, Das S, Hendricks O, Christensen JB (2015) Phenothiazines as a solution for multidrug resistant tuberculosis: from the origin to present. Int Microbiol 18:1–12

    CAS  PubMed  Google Scholar 

  26. Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S et al (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160

    Article  CAS  Google Scholar 

  27. Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R et al (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324

    Article  CAS  Google Scholar 

  28. Tantry SJ, Markad SD, Shinde V, Bhat J, Balakrishnan G, Gupta AK et al (2017) Discovery of imidazo[1,2-α]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 60:1379–1399

    Article  CAS  Google Scholar 

  29. Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795

    Article  Google Scholar 

  30. Zhang Y, Shi W, Zhang W, Mitchison D (2014) Mechanisms of pyrazinamide action and resistance. Microbiol Spectr 2:MGM2-0023-2013

    Article  Google Scholar 

  31. Li K, Schurig-Briccio LA, Feng X, Upadhyay A, Pujari V, Lechartier B et al (2014) Multi-target drug discovery for tuberculosis and other infectious diseases. J Med Chem 57:3126–3139

    Article  CAS  Google Scholar 

  32. Reddy VM, Einck L, Andries K, Nacy CA (2010) In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob Agents Chemother 54:2840–2846

    Article  CAS  Google Scholar 

  33. Geetha VR (2014) MmpL3 a potential new target for development of novel anti-tuberculosis drugs. Expert Opin Ther Targets 18(3):247–256

    Article  Google Scholar 

  34. Mary J, Michael RM, Patrick JB (2013) Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 8(7):855–875

    Article  Google Scholar 

  35. Ishizaki Y, Hayashi C, Inoue K, Igarashi M, Takahashi Y, Pujari V et al (2013) Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem 288:30309–30319

    Article  CAS  Google Scholar 

  36. Hayashi T, Yamamoto O, Sasaki H, Kawaguchi A, Okazaki H (1983) Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem Biophys Res Commun 115:1108–1113

    Article  CAS  Google Scholar 

  37. Sergio S, Pirali G, White R, Parenti F (1975) Lipiarmycin, a new antibiotic from Actinoplanes III. Mechanism of action. J Antibiot (Tokyo) 28:543–549

    Article  CAS  Google Scholar 

  38. Xie Y, Chen R, Si S, Sun C, Xu H (2007) A new Nucleosidyl-peptide antibiotic, Sansanmycin. J Antibiot 60:158–161

    Article  CAS  Google Scholar 

  39. Lee H, Suh JW (2016) Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J Ind Microbiol Biotechnol 43:205–212

    Article  CAS  Google Scholar 

  40. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S et al (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348:1106–1112

    Article  CAS  Google Scholar 

  41. Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang C-L, Takahashi Y et al (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot 60:357–363

    Article  CAS  Google Scholar 

  42. Pruksakorn P, Arai M, Liu L, Moodley P, Jacobs WR Jr, Kobayashi M (2011) Action mechanism of trichoderin a, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol Pharm Bull 34:1287–1290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, L., Dua, K., Kumar, S., Kumar, D., Majhi, S. (2021). Targeting Molecular and Cellular Mechanisms in Tuberculosis. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_14

Download citation

Publish with us

Policies and ethics