Skip to main content

An Automated Measuring Complex for Research Parameters of Unmanned Aerial Vehicle

  • Conference paper
  • First Online:
Proceedings of International Scientific Conference on Telecommunications, Computing and Control

Abstract

In research, design and development of unmanned aerial vehicles (UAV), a key role belongs to automated measuring complexes for its simulation and prototyping electromechanical system with digital control. Design and debugging of such system are suggested and performed by using model-based approach with automated simulation tools. This approach means creating and using in further the simulation model of the measuring complex. In the paper, the simulation model for research parameters of unmanned aerial vehicles is discussed. This model is suggested to develop based on Gough–Stewart platform (six-axes platform manipulator) with UAV mounted on it. The researched model includes the UAV’s trajectory generator, automatic control device for UAV, kinematic manipulator model and decision subsystem to define the current attitude of the manipulator dynamic side. The model allows to evaluate the functioning parameters of proportional–integral–derivative controllers of spatial orientation angles, as well as to automatically obtain program code for implementing both automation of testing and the UAV control device. Also, the presented model can function in conjunction with the user interface of the measuring complex and can be used to evaluate the parameters of complex functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valavanis, K.P., Vachtsevanos, G.J. (eds.): Handbook of Unmanned Aerial Vehicles. Springer, Netherlands, Dordrecht (2015). https://doi.org/10.1007/978-90-481-9707-1

  2. Budiyono, A., Riyanto, B., Joelianto, E. (eds.): Intelligent Unmanned Systems: Theory and Applications. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-00264-9

  3. Paw, Y.C., Balas, G.J.: Development and application of an integrated framework for small UAV flight control development. Mechatronics 21, 789–802 (2011). https://doi.org/10.1016/j.mechatronics.2010.09.009

    Article  Google Scholar 

  4. Liu, M., Egan, G.K., Santoso, F.: Modeling, autopilot design, and field tuning of a UAV with minimum control surfaces. IEEE Trans. Control Syst. Technol. 23, 2353–2360 (2015). https://doi.org/10.1109/TCST.2015.2398316

    Article  Google Scholar 

  5. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–386 (1965). https://doi.org/10.1243/PIME_PROC_1965_180_029_02

    Article  Google Scholar 

  6. Jang, T.K., Lim, B.S., Kim, M.K.: The canonical Stewart platform as a six DOF pose sensor for automotive applications. J. Mech. Sci. Technol. 32, 5553–5561 (2018). https://doi.org/10.1007/s12206-018-1101-0

    Article  Google Scholar 

  7. Furqan, M., Suhaib, M., Ahmad, N.: Studies on Stewart platform manipulator: a review. J. Mech. Sci. Technol. 31, 4459–4470 (2017). https://doi.org/10.1007/s12206-017-0846-1

    Article  Google Scholar 

  8. Drozd, O.V., Russkikh, P.A., Chentsov, S.V., Kapulin, D.V.: Integration of hardware and software tools for VLSI SoC class design support. IOP Conf. Ser. Mater. Sci. Eng. 450, 1–6 (2018). https://doi.org/10.1088/1757-899X/450/5/052011

    Article  Google Scholar 

  9. Drozd, O.V., Russkikh, P.A., Kapulin, D.V.: Special software for automated measuring complex based on Rohde & Schwarz equipment. In: 2019 International Siberian Conference on Control and Communications (SIBCON), pp. 1–4. IEEE, Tomsk (2019). https://doi.org/10.1109/SIBCON.2019.8729644

  10. Köhler, C.: Enhancing Embedded Systems Simulation. Vieweg+Teubner, Wiesbaden (2011). https://doi.org/10.1007/978-3-8348-9916-3

  11. Lebret, G., Liu, K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst. 10, 629–655 (1993). https://doi.org/10.1002/rob.4620100506

    Article  MATH  Google Scholar 

  12. Liu, M.-J., Li, C.-X., Li, C.-N.: Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Trans. Robot. Autom. 16, 94–98 (2000). https://doi.org/10.1109/70.833196

    Article  Google Scholar 

  13. Abdellatif, H., Heimann, B.: Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mech. Mach. Theory 44, 192–207 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.02.003

    Article  MATH  Google Scholar 

  14. Dasgupta, B., Mruthyunjaya, T.S.: A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33, 1135–1152 (1998). https://doi.org/10.1016/S0094-114X(97)00118-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Gallardo, J., Alcaraz, L.A.: Kinematics of the Gough-Stewart platform by means of the Newton-homotopy method. IEEE Lat. Am. Trans. 16, 2850–2856 (2018). https://doi.org/10.1109/TLA.2018.8804248

    Article  Google Scholar 

  16. Ruiz-Tolosa, J.R., Castillo, E.: From Vectors to Tensors. Springer, Berlin (2005). https://doi.org/10.1007/b138560

  17. Schulz, S., Seibel, A., Schreiber, D., Schlattmann, J.: Sensor concept for solving the direct kinematics problem of the Stewart-Gough platform. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1959–1964. IEEE, Vancouver (2017). https://doi.org/10.1109/IROS.2017.8206015

  18. Zhu, Q., Zhang, Z.: An efficient numerical method for forward kinematics of parallel robots. IEEE Access 7, 128758–128766 (2019). https://doi.org/10.1109/ACCESS.2019.2940064

    Article  Google Scholar 

  19. Mardiyanto, R., Hidayat, R., Aprilian, E., Suryoatmojo, H.: Development of autopilot system of unmanned aerial vehicle for aerial mapping application. In: 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 357–361. IEEE, Bali (2018). https://doi.org/10.1109/ISITIA.2018.8710966

  20. H-850 6-Axis Hexapod For Loads up to 250 kg. https://www.pi-usa.us/en/products/6-axis-hexapods-parallel-positioners/h-850-6-axis-hexapod-700800/. Last accessed 2019/10/29

Download references

Acknowledgements

The work was supported by the Ministry of Education and Science of the Russian Federation (No. 02.G25.31.0313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Drozd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drozd, O., Avlasko, P., Bordyugov, S., Kapulin, D. (2021). An Automated Measuring Complex for Research Parameters of Unmanned Aerial Vehicle. In: Voinov, N., Schreck, T., Khan, S. (eds) Proceedings of International Scientific Conference on Telecommunications, Computing and Control. Smart Innovation, Systems and Technologies, vol 220. Springer, Singapore. https://doi.org/10.1007/978-981-33-6632-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6632-9_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6631-2

  • Online ISBN: 978-981-33-6632-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics