Skip to main content

Nanoceramics: Synthesis, Characterizations and Applications

  • Chapter
  • First Online:
Nanomaterials and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 16))

Abstract

Nanoceramics are ultrafine particles with particle size less than 100 nm and have greater advantages over macroscale ceramics which are brittle and rigid. They are inorganic, metallic and non-metallic compounds that have high heat resistance. Their small particle size offers them unique properties which have led to their widespread use in various fields. Their improved properties include bioactivity, dielectricity, ferromagnetism, piezoelectricity, magnetoresistance and superconductivity. Hardness and strength of ceramics are greatly improved by reducing their particle size to be in the nanoscale. Nanoceramics can be conveniently prepared by various physical and chemical methods in various sizes and shapes such as nanoparticles, nanorods, nanotubes, nanoribbons, nanosheets and nanofluids which determines their properties. Characterization of nanoceramics can be carried out by surface characterization methods such as X-ray diffraction analysis, Infrared spectroscopy, Scanning electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, etc. Nanoceramic particles can be used for bone repair, drug delivery, energy supply and storage, communication, transportation systems and construction. The current article discusses in detail the nanoceramics, their preparation methods, various characterization techniques, their unique properties and their application in the biomedical field arising due to their excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khalil KA (2012) Advanced sintering of nano-ceramic materials. In: Ceramic materials-progress in modern ceramics, InTechOpen, London

    Google Scholar 

  2. Smith KT (2019) What are nanoceramics and their applications? Accessed March 3. https://azonano.com/article.aspx?ArticleID=5143

  3. Thomas SC, Harshita, Mishra PK, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21:6165–88

    Google Scholar 

  4. Virk HS, Poonam S (2010) Chemical route to nanotechnology. Int J Adv Eng Technol 1:114–129

    Google Scholar 

  5. Kiani A, Rahmani M, Manickam S, Tan B (2014) Nanoceramics: synthesis, characterization, and applications. J Nanomat 2014:1–2

    Article  Google Scholar 

  6. Sharma RK, Sharma P, Maitra A (2003) Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(III)/thiosulfate redox reaction. J Colloid Interface Sci 265:134–140

    Article  ADS  Google Scholar 

  7. Miyake H, Yuba Y, Gamo K, Namba S (1988) Defects induced by focused ion beam implantation in GaAs. J Vac Sci Technol B: Microelectron Process Phenom 6:1001

    Article  ADS  Google Scholar 

  8. Ting HT, Hossein KA, Chua HB (2009) Review of micromachining of ceramics by etching. T Nonferr Metal Soc China 19:1–16

    Article  Google Scholar 

  9. Wakamatsu MH, Salomão R (2010) Ceramic nanoparticles: what else do we have to know? InterCeram: Inter Ceram Rev 59:28–33

    Google Scholar 

  10. Hiemenz PC, Rajagopalan R (1997) Principles of colloidal and surface chemistry, revised and expanded, 3rd edn. CRC Press, New York

    Google Scholar 

  11. Wakamatsu MH, Salomão R (2011) (Unintentional) synthesis of ceramic nanoparticles. InterCeram: Inter Ceram Rev 60:364–369

    Google Scholar 

  12. Rao CNR, Müller A, Cheetham AK (2004) The chemistry of nanomaterials: synthesis, properties and applications, vol 1. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  13. Vashist SK (2013) Magnetic nanoparticles-based biomedical and bioanalytical applications. J Nanomed Nanotechnol 4:1000–1130

    Article  Google Scholar 

  14. Xie L, Abliz D, Li D (2014) Thin film coating for polymeric micro parts, Vol. 7 comprehensive materials processing, reference module in materials science and materials engineering, Elsevier Publications, London

    Google Scholar 

  15. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials, micro and nano technologies, Woodhead Publishing, Massachusetts.

    Google Scholar 

  16. Goharian A (2019) Porous osseoconductive layering for enhancement of osseointegration. In: Osseointegration of orthopaedic implants, Academic Press, Cambridge, England.

    Google Scholar 

  17. Ballo AM, Bjoorn D, Astrand M, Palmquist A, Lausmaa J, Thomsen P (2013) Bone response to physical-vapour-deposited titanium dioxide coatings on titanium implants. Clin Oral Implants Res 24(9):1009–1017

    Google Scholar 

  18. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganism’s. Appl Microbiol Biotechnol 95:299–311

    Article  Google Scholar 

  19. Cao G (2014) Nanostructures & Nanomaterials: synthesis, properties & applications. Imperial College Press, London

    Google Scholar 

  20. Kumar DS, Kumar BJ, Mahesh HM (2018) Chapter 3—Quantum Nanostructures’. In: Synthesis of inorganic nanomaterials, micro and nano technologies, Woodhead Publishing, Cambridge, England.  

    Google Scholar 

  21. Ataol S, Tezcaner Duygulu O, Keskin D, Machin NE (2015) Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis and their effect on osteogenic differentiation of stem cells. J Nanopart Res 17:1–14

    Article  Google Scholar 

  22. An GH, Wang HJ, Kim BH et al (2014) Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater Sci Eng, A 449–451:821–824

    Google Scholar 

  23. Kulkarni M, Mazare A, Schmuki P et al (2014) Biomaterial surface modification of titanium and titanium alloys for medical applications. In: Nanomedicine, UK Central Press, Cambridge

    Google Scholar 

  24. Giavaresi G, Ambrosio L, Battiston GA et al (2004) Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Biomater 25(25):5583–5591

    Article  Google Scholar 

  25. Szili EJ, Kumar S, Smart RSC, Voelcker NH (2009) Generation of a stable surface concentration of amino groups on silica coated onto titanium substrates by the plasma enhanced chemical vapour deposition method. Appl Surf Sci 255(15):6846–6850

    Article  ADS  Google Scholar 

  26. Gennari FC, Gamboa JJA (2018) A Systematic approach to the synthesis, thermal stability and hydrogen storage properties of rare-earth borohydrides. In: Emerging Materials from Energy Conversion and Storage, Elsevier Publications, London.

    Google Scholar 

  27. Tsuzuki T, McCormick PG (2004) Mechanochemical synthesis of nanoparticles. J Mater Sci 39:5143–5146

    Article  ADS  Google Scholar 

  28. Benabdeslam HEB, Ginebra MP, Vert M (2008) Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD-CaO reaction kinetics. Acta Biomater 4(2):378–386

    Article  Google Scholar 

  29. Singh Z (2018) Nanoceramics in bone tissue engineering: the future lies ahead. Trends J Sci Res 3:120–123

    Article  Google Scholar 

  30. Bulina NV, Chaikina MV, Prosanov IY (2018) Lanthanum-silicate-substituted apatite synthesized by fast mechanochemical method: characterization of powders and biocoatings produced by micro-arc oxidation. Mater Sci Eng, C 92:435–446

    Article  Google Scholar 

  31. Balaz M, Daneu N, Balazova L (2017) Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Adv Powder Technol 28(12):3307–3312

    Article  Google Scholar 

  32. Fahami A, Kahrizsangi RE, Tabrizi BN (2011) Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci 13(1):135–141

    Article  ADS  Google Scholar 

  33. BenAbdeslam HEB, Mochales C, Ginebra MP et al (2003) Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: a kinetic study. J Biomed Mater Res A 67A(3):927–937

    Article  Google Scholar 

  34. Huang A, Dai H, Wu X, Zhao Z et al (2019) Synthesis and characterization of mesoporous hydroxyapatite powder by microemulsion technique. J Mater Res Technol 8(3):3158–3166

    Article  Google Scholar 

  35. Xu H, Cheng L, Wang C et al (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomater 32(35):9364–9373

    Article  Google Scholar 

  36. Pottathara YB, Grohens Y, Kokol V et al (2019) Synthesis and processing of emerging two-dimensional nanomaterials. In: Nanomaterials synthesis, design, fabrication and applications, micro and nano technologies, Elsevier Publications, London

    Google Scholar 

  37. Lugo VR, Karthik TVK, Anaya DM, Rosas ER (2018) Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. R Soc Open Sci 5(8):180962

    Article  Google Scholar 

  38. Stipniece L, Ancane KS, Borodajenko N (2014) Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Inter 40(2):3261–3267

    Article  Google Scholar 

  39. Pauline SA, Mudali UK, Rajendran N (2013) Fabrication of nanoporous Sr-incorporated TiO2 coating on 316L SS: evaluation of bioactivity and corrosion protection. Mater Chem Phy 142:27–36

    Article  Google Scholar 

  40. Pauline SA, Rajendran N (2014) Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications. Mater Sci Eng, C 36:194–205

    Article  Google Scholar 

  41. Maho A, Detriche S, Delhalle J et al (2013) Sol-gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces. Mater Sci Eng, C 33(5):2686–2697

    Article  Google Scholar 

  42. Georgescu D, Brezoiu AM, Mitran RA et al (2017) Mesostructured silica-titania composites for improved oxytetracycline delivery systems. C R Chim 20:1017–1025

    Article  Google Scholar 

  43. Foss CA (2003) Optical properties of nanoparticle pair structures. In: Encyclopedia of materials: science and technology, Elsevier Publications, London

    Google Scholar 

  44. Cao G, Liu D (2008) Template-based synthesis of nanorod, nanowire, and nanotube arrays. In: Springer handbook of nanotechnology, Springer, New York. 136(1–2):45–64

    Google Scholar 

  45. Regi MV (2010) Evolution of bioceramics within the field of biomaterials. C R Chim 13(1–2):174–185

    Article  Google Scholar 

  46. Fan J, Lei J, Yu C (2007) Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater Chem Phy 103(2–3):489–493

    Article  Google Scholar 

  47. Wang M, Guo L, Sun H (2019) Manufacture of biomaterials. In: Encyclopedia of biomedical engineering, Elsevier Publications, London

    Google Scholar 

  48. Shin K, Acri T, Geary S et al (2017) Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng Part A 23(19–20):1169–1180

    Article  Google Scholar 

  49. Stefanic M, Krnel K, Pribosic I et al (2012) Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci 258(10):4649–4656

    Article  ADS  Google Scholar 

  50. Bigi A, Boanini E, Bracci B et al (2005) Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomater 26:4085–4089

    Article  Google Scholar 

  51. Fathyunes L, Khalil-Allafi J, Moosavifar M (2019) Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: Biocorrosion and mechanical behavior. J Mech Behav Biomed Mater 90:575–586

    Article  Google Scholar 

  52. Drevet R, Zhuova Y, Dubinskiy S et al (2019) Electrodeposition of cobalt-substituted calcium phosphate coatings on Ti-22Nb-6Zr alloy for bone implant applications. J Alloys Compd 793:576–582

    Article  Google Scholar 

  53. Poorraeisi M, Afshar A (2018) The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel. Surf Coat Technol 339:199–207

    Article  Google Scholar 

  54. Pontoni D, Narayanan T, Rennie AR (2002) Tr-saxs study of nucleation and growth of sillica colloids. Langmuir 18:56–59

    Google Scholar 

  55. Ebnesajid S (2014) Chapter 4—Surface and material characterization techniques. In: Surface treatment of materials for adhesive bonding. William Andrew Applied Science Publishers, New York

    Google Scholar 

  56. Ismail AF, Khulbe KC, Matsuura T (2019) Chapter 3—RO membrane characterization. In: Reverse osmosis. Elsevier Publications, London

    Google Scholar 

  57. Bergstrom J (2015) 2—Experimental characterization techniques, mechanics of solid polymers. In: Theory and computational modeling. William Andrew Applied Science Publishers, New York

    Google Scholar 

  58. Ratner BD (2013) Chapter I.1.5—Surface Properties and Surface Characterization of Biomaterials. In: Biomaterials science (Third Edition), an introduction to materials in medicine. Academic Press, Cambridge, England.

    Google Scholar 

  59. Ven ALVD, Mack A, Dunner Jr K et al (2012) Chapter one—preparation, characterization, and cellular associations of silicon logic-embedded vectors. In: Methods in enzymology, vol. 508. Elsevier Publications, London

    Google Scholar 

  60. Bajpai OP, Panja S, Chattopadhyay S et al (2015) Process-structure-property relationships in nanocomposites based on piezoelectric-polymer matrix and magnetic nanoparticles. In: Manufacturing of nanocomposites with engineering plastic. Elsevier Publications, London

    Google Scholar 

  61. Cuenat A, Leah R (2014) Chapter 7—Scanning probe and particle beam microscopy. In: Fundamental principles of engineering nanometrology (2nd edn), micro and nano technologies. William Andrew Applied Science Publishers, New York

    Google Scholar 

  62. Ramakrishna BL, Ong EW (2001) Surface evaluation by atomic force microscopy. In: Encyclopedia of materials: science and technology (2nd edn), Elsevier Publications, London

    Google Scholar 

  63. Shi D, Guo Z, Bedford N (2015) 2-Characterization and Analysis of Nanomaterials. In: Nanomaterials and Devices, Micro and Nano Technologies. William Andrew Applied Science Publishers, New York

    Google Scholar 

  64. Causserand C, Aimar P (2010) 1.15—Characterization of filtration membranes. In: Comprehensive membrane science and engineering, vol. 1. Elsevier Publications, London

    Google Scholar 

  65. McCluskey MD (2017) High-pressure IR. In: Encyclopedia of spectroscopy and spectrometry (3rd edn), reference module in chemistry, molecular sciences and chemical engineering. Elsevier Publications, London

    Google Scholar 

  66. Ohara S, Adschiri T, Ida T, Yashima M et al (2012) Chapter 5 - Characterization methods for nanostructure of materials. In: Nanoparticle technology handbook (2nd edn). Elsevier Publications, London

    Google Scholar 

  67. Mather RR (2009) 13—Surface modification of textiles by plasma treatments. In: Surface modification of textiles. Woodhead Publishing Series in Textiles, Cambridge

    Google Scholar 

  68. Arcos D, Regi MV (2013) Bioceramics for drug delivery. Acta Mater 61:890–911

    Article  ADS  Google Scholar 

  69. Smith AJ, Dieppe P, Vernon K et al (2012) Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the national joint registry of England and Wales. The Lancet 379:1199–1204

    Article  Google Scholar 

  70. Wang CJ, Huang TW, Wang JW et al (2002) The often poor clinical outcome of infected total knee arthroplasty. J Arthroplasty 17:608–614

    Article  Google Scholar 

  71. Simchi A, Eng D, Tamjid E (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7:22–39

    Article  Google Scholar 

  72. Duan K, Wang R (2006) Surface modifications of bone implants through wet chemistry. J Mater Chem 16:2309–2321

    Article  Google Scholar 

  73. In HSF, Hench LL, Editors WJ (1993) An introduction to bioceramics. World Scientific, Singapore

    Google Scholar 

  74. Huang HL, Chang YY, Weng JC (2013) Anti-bacterial performance of Zirconia coatings on Titanium implants. Thin Solid Films 528:51–156

    Article  ADS  Google Scholar 

  75. Khanna R, Kokubo T, Matsushita T et al (2016) Fabrication of dense α-alumina layer on Ti-6Al-4 V alloy hybrid for bearing surfaces of artificial hip joint. Mater Sci Eng, C 69:1229–1239

    Article  Google Scholar 

  76. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  77. Lakstein D, Kopelovitch W, Barkay Z et al (2009) Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4 V implants in rabbits. Acta Biomater 5:2258–2269

    Article  Google Scholar 

  78. Esteban SL, Saiz E, Fujino S et al (2003) Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc 23(15):2921–2930

    Article  Google Scholar 

  79. Tarpani L, Morena F, Gambucci M (2016) The influence of modified silica nanomaterials on adult stem cell culture. Nanomaterials 6:104–114

    Article  Google Scholar 

  80. Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci. Polymer Edition 15:543–562

    Article  Google Scholar 

  81. Habraken WJEM, Walke JGC, Jansen JA (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248

    Article  Google Scholar 

  82. Fu L, Xiong Y, Carlsson G et al (2018) Biodegradable Si3N4 bioceramic sintered with Sr, Mg and Si for spinal fusion: surface characterization and biological evaluation. Appl Mater Today 12:260–275

    Article  Google Scholar 

  83. Nabiyouni M, Bruckner T, Zhou H et al (2018) Magnesium-based bioceramics in orthopedic applications. Acta Biomater 66:23–43

    Article  Google Scholar 

  84. Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomater 28:354–369

    Article  Google Scholar 

  85. Ainslie KM, Tao SL, Popat KC et al (2008) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res, Part A 91:647–655

    Google Scholar 

  86. Luginbuehl V, Meinel L, Merkle HP et al (2004) Localized delivery of growth factors for bone repair. Eur J Pharm 58:197–208

    Google Scholar 

  87. Chao CS, Liu KH, Tung WL et al (2012) Bioactive TiO2 ultrathin film with worm-like mesoporosity for controlled drug delivery. Micropor Mesopor Mat 152:58–63

    Article  Google Scholar 

  88. Couto DS, Alves NM, Mano JF (2008) Nanostructured multilayer coatings combining chitosan with bioactive glass nanoparticles. J Nanosci Nanotechnol 8:1–8

    Google Scholar 

  89. Mahlooji E, Atapour M, Labbaf S (2019) Electrophoretic deposition of Bioactive glass—chitosan nanocomposite coatings on Ti-6Al-4 V for orthopaedic applications. Carbohydr Polym 226:115299

    Article  Google Scholar 

  90. Kumar AM, Adesina AY, Hussein MA (2019) PEDOT/FHA nanocomposite coatings on newly developed Ti-Nb-Zr implants: biocompatibility and surface protection against corrosion and bacterial infections. Mater Sci Eng, C 98:482–495

    Article  Google Scholar 

  91. Goncalves SEP, Bresciani E (2017) Reconstructions using alloys and ceramics. In: Material-tissue interfacial phenomena. Elsevier Publications, London.

    Google Scholar 

  92. Wu H, Xie L, He M et al (2019) A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues. Acta Biomater 97:597–607

    Article  Google Scholar 

  93. Pekkan G, Pekkan K, Park J et al (2016) A study on microstructural characterization of the interface between apatite-wollastonite based glass ceramic and feldspathic dental porcelain. Ceram Inter 42(16):19245–19249

    Article  Google Scholar 

  94. Donovan TE (2008) Factors essential for successful all-ceramic restorations. J Am Dent Assoc 139:14S–18S

    Article  Google Scholar 

  95. Koutayas SO, Vagkopoulou T, Pelekanos S et al (2009) Zirconia in dentistry: part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent 4(4):348–380

    Google Scholar 

  96. Regi MV, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558

    Article  Google Scholar 

  97. Regi MV, Balas F, Colilla M et al (2008) Bone-regenrative bioceramic implants with drug and protein controlled delivery capability. Solid State Sci 1:163–191

    Google Scholar 

  98. Datt A, Burns EA, Dhuna NA et al (2013) Loading and release of 5-fluorouracil from HY zeolites with varying SiO2/Al2O3 ratios. Micropor Mesopor Mater 167:182–187

    Article  Google Scholar 

  99. Ozdemir V, Glatt BWJSJ, Tsuang MT et al (2006) Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol 24:942–946

    Article  Google Scholar 

  100. Yi H, Rehman FU, Zhao C (2016) Recent advances in nano scaffolds for bone repair. Bone Res 4:1–11

    Article  Google Scholar 

  101. Ansari AA, Hasan TN, Syed et al (2013) In-vitro cyto-toxicity, geno-toxicity, and bio-imaging evaluation of one-pot synthesized luminescent functionalized mesoporous SiO2@Eu(OH)3 core-shell microspheres. Nanomedicine 9:1328–1335

    Google Scholar 

  102. Yang W, Tian H, Liao J (2020) Flexible and strong Fe3O4/cellulose composite film as magnetic and UV sensor. Appl Surf Sci 507:145092

    Article  Google Scholar 

  103. Shi Z, Huang X, Cai Y et al (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

    Article  Google Scholar 

  104. Khan Y, Yaszemski MJ, Mikos AG et al (2008) Tissue engineering of bone: material and matrix considerations. J Bone Jt Surg 90:36–42

    Article  Google Scholar 

  105. Dziak R, Mohan K, Almaghrabi B et al (2020) Nanoceramics for bone regeneration in the oral and craniomaxillofacial complex. In: Nanobiomaterials in clinical dentistry. Elsevier Publications, London

    Google Scholar 

  106. Deepthi S, Venkatesan J, Kim SK et al (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Inter J Biol Macromol 93:1338–1353

    Article  Google Scholar 

  107. Luo Z, Deng Y, Zhang R et al (2015) Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids Surf B 131:73–82

    Article  Google Scholar 

  108. Xia L, Lin K, Jiang X et al (2014) Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomater 35:8514–8527

    Article  Google Scholar 

  109. Chen P, Liu L, Pan J et al (2019) Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C: Mater Biol Appl 97:325–335

    Article  Google Scholar 

  110. Marsh AC, Mellott NP, Chamorro NP et al (2019) Fabrication and multiscale characterization of 3D silver containing bioactive glass-ceramic scaffolds. Bioact Mater 4:215–223

    Article  Google Scholar 

  111. Kumar SD, Abudhahir KM, Selvamurugan N et al (2018) Formulation and biological actions of nano-bioglass ceramic particles doped with Calcarea phosphorica for bone tissue engineering. Mater Sci Eng C: Mater Biol Appl 83:202–209

    Article  Google Scholar 

  112. Shokrollahi H, Salimi F, Doostmohammadi A (2017) The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery. J Mech Behav Biomed Mater 74:365–370

    Article  Google Scholar 

  113. Veloza AM, Hossain KMZ, Scammell BE (2020) Formulating injectable pastes of porous calcium phosphate glass microspheres for bone regeneration applications. J Mech Behav Biomed Mater 102:103489

    Article  Google Scholar 

  114. Ali M, Okamota M, Komichi S (2019) Lithium-containing surface pre-reacted glass fillers enhance hDPSC functions and induce reparative dentin formation in a rat pulp capping model through activation of Wnt/β-catenin signaling. Acta Biomate 96:594–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anne Pauline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pauline, S.A. (2021). Nanoceramics: Synthesis, Characterizations and Applications. In: Santra, T.S., Mohan, L. (eds) Nanomaterials and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-33-6252-9_5

Download citation

Publish with us

Policies and ethics