Skip to main content

High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles

  • Living reference work entry
  • First Online:
Gene Delivery

Part of the book series: Biomaterial Engineering ((BIOENG))

  • 26 Accesses

Abstract

Cationic polymers have become one of the most promising nonviral vectors for gene delivery. However, complex formation of anionic nucleic acid molecules and cationic polymers are unstable because of their weak electrostatic interactions, resulting in polymer/nucleic acid polyplexes with poor serum resistance and a short circulation time in vivo. Furthermore, most polymer/nucleic acid polyplexes mixture exhibit high toxicity because an excess of high molecular weight cationic polymers that are typically required for complete gene condensation. This chapter introduces the preparation and characterizations of a class of bioreducible cationic nanomicelles endowed with high DNA-binding affinity, allowing for efficient DNA condensation and high transfection efficiency at a low nitrogen to phosphorus (N/P) ratio. These cationic nanomicelles hold promising potential as a high efficiency nonviral gene delivery vector for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • An D, Wang LH, Ernst AU, Chiu A, Lu YC, Flanders JA, Datta AK, Ma M (2019) An atmosphere-breathing refillable biphasic device for cell replacement therapy. Adv Mater 31(52):e1905135. https://doi.org/10.1002/adma.201905135

    Article  Google Scholar 

  • Antila HS, Härkönen M, Sammalkorpi M (2015) Chemistry specificity of DNA–polycation complex salt response: a simulation study of DNA, polylysine and polyethyleneimine. Phys Chem Chem Phys 17(7):5279–5289

    Article  Google Scholar 

  • Belete TM (2021) Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect Drug Resist 14:151–161. https://doi.org/10.2147/IDR.S288877

    Article  Google Scholar 

  • Benenson S, Oster Y, Cohen MJ, Nir-Paz R (2021) BNT162b2 mRNA Covid-19 vaccine effectiveness among health care workers. N Engl J Med 384:1775–1777

    Google Scholar 

  • Bouard D, Alazard-Dany N, Cosset FL (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157(2):153–165

    Article  Google Scholar 

  • Cheng B-F, Wang L-H, You Y-Z (2016) Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization using titanium dioxide. Macromol Res 24(9):811–815

    Article  Google Scholar 

  • Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M (2020) Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med 383(16):1544–1555

    Article  Google Scholar 

  • Ding S-G, Yu L, Wang L-H, Wang L-D, Yu Z-Q, You Y-Z (2016) Self-assembling Janus dendritic polymer for gene delivery with low cytotoxicity and high gene transfection efficiency. J Mater Chem B 4(39):6462–6467

    Article  Google Scholar 

  • Fuchs S, Ernst AU, Wang L-H, Shariati K, Wang X, Liu Q, Ma TC (2021) Hydrogels in emerging technologies for type 1 diabetes. Chem Rev 121(18):11458–11526

    Google Scholar 

  • Gao X, Yao L, Song Q, Zhu L, Xia Z, Xia H, Jiang X, Chen J, Chen H (2011) The association of autophagy with polyethylenimine-induced cytotoxity in nephritic and hepatic cell lines. Biomaterials 32(33):8613–8625

    Article  Google Scholar 

  • Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F (2020) The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines 5(1). https://doi.org/10.1038/s41541-020-0159-8

  • Kasuya MCZ, Nakano S, Katayama R, Hatanaka K (2011) Evaluation of the hydrophobicity of perfluoroalkyl chains in amphiphilic compounds that are incorporated into cell membrane. J Fluor Chem 132(3):202–206

    Article  Google Scholar 

  • Kostiainen MA, Hardy JG, Smith DK (2005) High-affinity multivalent DNA binding by using low-molecular-weight dendrons. Angew Chem 117(17):2612–2615

    Article  Google Scholar 

  • Li M, Schlesiger S, Knauer SK, Schmuck C (2015) A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew Chem 127(10):2984–2987

    Article  Google Scholar 

  • Lostalé-Seijo I, Montenegro J (2018) Synthetic materials at the forefront of gene delivery. Nat Rev Chem 2(10):258–277. https://doi.org/10.1038/s41570-018-0039-1

    Article  Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114(1):100–109

    Article  Google Scholar 

  • Mastrobattista E, Hennink WE (2012) Charged for success. Nat Mater 11(1):10–12

    Article  Google Scholar 

  • Mulligan RC (1993) The basic science of gene therapy. Science 260(5110):926–932

    Article  Google Scholar 

  • Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581–593

    Article  Google Scholar 

  • Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279. https://doi.org/10.1038/nrd.2017.243

    Article  Google Scholar 

  • Tan L, Sun X (2018) Recent advances in mRNA vaccine delivery. Nano Res 11(10):5338–5354. https://doi.org/10.1007/s12274-018-2091-z

    Article  Google Scholar 

  • Tanne JH (2020a) Covid-19: FDA approves moderna vaccine as US starts vaccinating health workers BMJ 2020;371:m4924. https://www.bmj.com/content/371/bmj.m4924

  • Tanne JH (2020b) Covid-19: FDA panel votes to authorise Pfizer BioNTech vaccine. British Medical Journal Publishing Group BMJ 2020;371:m4799. https://www.bmj.com/content/371/bmj.m4799

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  Google Scholar 

  • Wang H, Ding S, Zhang Z, Wang L, You Y (2019) Cationic micelle: a promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 21(7). https://doi.org/10.1002/jgm.3101

  • Wang M, Liu H, Li L, Cheng Y (2014) A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun 5(1):1–8

    Google Scholar 

  • Wang L-H, Wu T, Wu D-C, You Y-Z (2016) Bioreducible gene delivery vector capable of self-scavenging the intracellular-generated ROS exhibiting high gene transfection. ACS Appl Mater Interfaces 8(30):19238–19244

    Article  Google Scholar 

  • Wang LH, Wu DC, Xu HX, You YZ (2016) High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew Chem Int Ed Engl 55(2):755–759. https://doi.org/10.1002/anie.201508695

    Article  Google Scholar 

  • Wang L, Zhang Z, Zeng T, Xia L, Nie X, Chen G, Y-z Y (2017) Responsive cationic polymer and cationic nanomicelle vectors for gene delivery. Acta Polym Sin 12:1883–1904

    Google Scholar 

  • Wu T, Wang L, Ding S, You Y (2017) Fluorinated PEG-polypeptide polyplex micelles have good serum-resistance and low cytotoxicity for gene delivery. Macromol Biosci 17(8):1700114

    Article  Google Scholar 

  • Xu C-T, Chen G, Nie X, Wang L-H, Ding S-G, You Y-Z (2017) Low generation PAMAM-based nanomicelles as ROS-responsive gene vectors with enhanced transfection efficacy and reduced cytotoxicity in vitro. New J Chem 41(9):3273–3279

    Article  Google Scholar 

  • Yue Y, Jin F, Deng R, Cai J, Chen Y, Lin MC, Kung H-F, Wu C (2011) Revisit complexation between DNA and polyethylenimine – effect of uncomplexed chains free in the solution mixture on gene transfection. J Control Release 155(1):67–76

    Article  Google Scholar 

  • Zhou J, Liu J, Cheng CJ, Patel TR, Weller CE, Piepmeier JM, Jiang Z, Saltzman WM (2012) Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery. Nat Mater 11(1):82–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Zi You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, LH., You, YZ. (2021). High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles. In: Tian, H., Chen, X. (eds) Gene Delivery. Biomaterial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6198-0_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6198-0_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6198-0

  • Online ISBN: 978-981-33-6198-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics