Skip to main content

Label-Free Raman Spectroscopic Techniques with Morphological and Optical Characterization for Cancer Cell Analysis

  • Chapter
  • First Online:
Advanced Imaging and Bio Techniques for Convergence Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1310))

Abstract

Using the Raman spectroscopic analysis system that gives the chemical information of the biomaterials, classification is performed through the acquisition of fingerprint signals for each cell line, and the basis of the diagnosis is provided. The origin of diagnosis can be clarified by precise analysis through comparison of local signals and morphology in cells, including measurement at tissue level. In this result, normal breast cell line (MCF-10A) and breast cancer cell lines (MDA-MB-231, MDA-MB-453) were characterized using Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy. These three modalities were combined in order to not only separate cancerous and noncancerous cell lines but to analyze their morphological and optical properties. From the results, the inherent optical properties of cancer cells separated from normal cells in terms of local variation were observed. Bright-field (BF) transmission imaging is also compared to the morphological height difference obtained from AFM and is correlated with surface Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramczyk H et al (2011) The label-free Raman imaging of human breast cancer. J Mol Liq 164(1–2):123–131

    Article  CAS  Google Scholar 

  • Abramczyk H et al (2012) Raman 'optical biopsy’ of human breast cancer. Progress in Biophysics & Molecular Biology 108(1–2):74–81

    Article  CAS  Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2(11):715–725

    Article  CAS  Google Scholar 

  • Burdall SE et al (2003) Breast cancer cell lines: friend or foe? Breast Cancer Res 5(2):89–95

    Article  Google Scholar 

  • Calzado-Martin A et al (2016) Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano 10(3):3365–3374

    Article  CAS  Google Scholar 

  • Carvalho LFCS et al (2015) Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma. Exp Mol Pathol 98(3):502–509

    Article  CAS  Google Scholar 

  • Feng SY et al (2011) Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis. Science China-Life Sciences 54(9):828–834

    Article  CAS  Google Scholar 

  • Gautam R et al (2015) Raman and mid-infrared spectroscopic imaging: applications and advancements. Curr Sci 108(3):341–356

    CAS  Google Scholar 

  • Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12(104)

    Google Scholar 

  • Haka AS et al (2005) Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci U S A 102(35):12371–12376

    Article  CAS  Google Scholar 

  • Haka AS et al (2009) Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Opt:14(5)

    Google Scholar 

  • Ishigaki M et al (2016) Diagnosis of early-stage esophageal cancer by Raman spectroscopy and chemometric techniques. Analyst 141(3):1027–1033

    Article  CAS  Google Scholar 

  • Kamemoto LE et al (2010) Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl Spectrosc 64(3):255–261

    Article  CAS  Google Scholar 

  • Kawabata T et al (2011) Near-infrared multichannel Raman spectroscopy with a 1064 nm excitation wavelength for ex vivo diagnosis of gastric cancer. J Surg Res 169(2):E137–E143

    Article  Google Scholar 

  • Kirsch M et al (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398(4):1707–1713

    Article  CAS  Google Scholar 

  • Larraona-Puy M et al (2009) Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J Biomed Opt 14(5)

    Google Scholar 

  • Larraona-Puy M et al (2011) Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy. J Mol Struct 993(1–3):57–61

    Article  CAS  Google Scholar 

  • Lee YJ et al (2013) Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM. Micron 49:54–59

    Article  CAS  Google Scholar 

  • Lee S et al (2018) Local-dependency of morphological and optical properties between breast cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 205:132–138

    Article  CAS  Google Scholar 

  • Li QS et al (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613

    Article  CAS  Google Scholar 

  • Li Y et al (2010) Research on the Raman spectral character and diagnostic value of squamous cell carcinoma of oral mucosa. J Raman Spectrosc 41(2):142–147

    CAS  Google Scholar 

  • Liu TY et al (2011) Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat Commun 2

    Google Scholar 

  • Lyng FM et al (2007) Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol 82(2):121–129

    Article  CAS  Google Scholar 

  • Maiti NC et al (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein. J Am Chem Soc 126(8):2399–2408

    Article  CAS  Google Scholar 

  • Marro M et al (2014) Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis. J Biophotonics 7(9):724–734

    Article  CAS  Google Scholar 

  • McQueenie R et al (2012) Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal Chem 84(14):5968–5975

    Article  CAS  Google Scholar 

  • Neugebauer U et al (2010) Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst 135(12):3178–3182

    Article  CAS  Google Scholar 

  • Oshima Y et al (2010) Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy. J Biomed Opt 15(1)

    Google Scholar 

  • Rehman S et al (2007) Raman spectroscopic analysis of breast cancer tissues: identifying differences between normal, invasive ductal carcinoma and ductal carcinoma in situ of the breast tissue. J Raman Spectrosc 38(10):1345–1351

    Article  CAS  Google Scholar 

  • Rygula A et al (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44(8):1061–1076

    Article  CAS  Google Scholar 

  • Saha A et al (2011) Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies. Biomed Opt Express 2(10):2792–2803

    Article  CAS  Google Scholar 

  • Sato H et al (2009) Raman study of brain functions in live mice and rats: a pilot study. Vib Spectrosc 50(1):125–130

    Article  CAS  Google Scholar 

  • Shapiro A et al (2011) Raman molecular imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur Urol 59(1):106–112

    Article  Google Scholar 

  • Singh B et al (2012) Application of vibrational microspectroscopy to biology and medicine. Curr Sci 102(2):232–244

    CAS  Google Scholar 

  • Smith R, Wright KL, Ashton L (2016) Raman spectroscopy: an evolving technique for live cell studies. Analyst 141(12):3590–3600

    Article  CAS  Google Scholar 

  • Synytsya A et al (2014) Raman spectroscopy at different excitation wavelengths (1064, 785 and 532 nm) as a tool for diagnosis of colon cancer. J Raman Spectrosc 45(10):903–911

    Article  CAS  Google Scholar 

  • Talari ACS et al (2015) Raman spectroscopic analysis differentiates between breast cancer cell lines. J Raman Spectrosc 46(5):421–427

    Article  CAS  Google Scholar 

  • Zhou HB et al (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 86(3):1525–1533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ki Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S., Kim, J.K. (2021). Label-Free Raman Spectroscopic Techniques with Morphological and Optical Characterization for Cancer Cell Analysis. In: Kim, J.K., Kim, J.K., Pack, CG. (eds) Advanced Imaging and Bio Techniques for Convergence Science. Advances in Experimental Medicine and Biology, vol 1310. Springer, Singapore. https://doi.org/10.1007/978-981-33-6064-8_14

Download citation

Publish with us

Policies and ethics