Skip to main content

Natural Polymers in Pharmaceutical Nanotechnology

  • Chapter
  • First Online:
Nanomaterials and Nanotechnology

Abstract

The use of natural polymers for the release of drugs is attractive due to biodegradability, biocompatibility, inexpensive, chemically modifiable, in addition to secondary properties such as high swelling capacity, bioadhesion, offering positive electric charges, and stimulus-sensitive factors such as pH and temperature. The present work proposes a critical approach to the state of the art on the applications of natural polymers for the release of drugs, and the manufacture of nanoparticles, including advantages and limitations. We also address the vectorization analysis of nanoparticles elaborated with natural polymers, and we emphasize the application of nanoparticles for gene therapy. Finally, due to the nature of nanoparticle fabrication and disposition, we included a section called “Special requirements in the characterization of excipients and nanoparticles fabricated with natural polymers” aimed to recommend a physicochemical characterization that guarantees the adequate reproducibility of the formulations, one of the great paradigms in the development of nanoparticles elaborated with natural polymers. Finally, we present a section denominated “Nanotoxicology of natural polymers used in the pharmaceutical area.” We mention specific cases of the limitations in this type of excipient, although we also highlight new and better properties that can be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrover A, Paolicelli P, Petralito S, Di Muzio L, Trilli J, Cesa S, Tho I, Casadei MA (2019) Gellan gum/laponite beads for the modified release of drugs: Experimental and modeling study of gastrointestinal release. Pharmaceutics 11

    Google Scholar 

  • Ahad HA, Reddy BKK, Ishaq BM, Kumar CH, Kumar CS (2010) Fabrication and in vitro evaluation of glibenclamide Abelmoschus esculentus fruit mucilage controlled release matrix tablets. J Pharm Res 3:943–946

    Google Scholar 

  • Ahonen M, Kahru A, Ivask A, Kasemets K, Kõljalg S, Mantecca P, Vrček IV, Keinänen-Toivola MM, Crijns F (2017) Proactive approach for safe use of antimicrobial coatings in healthcare settings: opinion of the cost action network AMiCI. Int J Environ Res Public Health 14

    Google Scholar 

  • Ali SFB, Afrooz H, Hampel R, Mohamed EM, Bhattacharya R, Cook P, Khan MA, Rahman Z (2019) Blend of cellulose ester and enteric polymers for delayed and enteric coating of core tablets of hydrophilic and hydrophobic drugs. Int J Pharm 567:118462

    Article  CAS  Google Scholar 

  • An FF, Zhang XH (2017) Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 7:3667–3689

    Article  CAS  Google Scholar 

  • Anguela XM, High KA (2019) Entering the modern era of gene therapy. Annu Rev Med 70:273–288

    Article  CAS  Google Scholar 

  • Arora S, Gupta S, Narang RK, Budhiraja RD (2011) Amoxicillin loaded chitosan-alginate polyelectrolyte complex nanoparticles as mucopenetrating delivery system for H. pylori. Sci Pharm 79:673–694

    Article  CAS  Google Scholar 

  • AshaRani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  CAS  Google Scholar 

  • Asnani GP, Bahekar J, Kokare CR (2018) Development of novel pH–responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil. J Drug Deliv Sci Technol 48:200–208

    Article  CAS  Google Scholar 

  • Assaf SM, Subhi Khanfar M, Bassam Farhan A, Said Rashid I, Badwan AA (2019) Preparation and characterization of co-processed starch/MCC/chitin hydrophilic polymers onto magnesium silicate. Pharm Dev Technol 24:761–774

    Article  CAS  Google Scholar 

  • Aswathy RG, Sivakumar B, Brahatheeswaran D, Fukuda T, Yoshida Y, Maekawa T, Kumar DS (2012) Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv Nat Sci Nanosci, Nanotechnol, p 3

    Google Scholar 

  • Azimi B, Nourpanah P, Rabiee M, Arbab S (2013) Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran Biomed J 18:34–40

    Google Scholar 

  • Babu A, Templeton AK, Munshi A, Ramesh R (2014) Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech 15:709–721

    Article  CAS  Google Scholar 

  • Banerjee A, Bandopadhyay R (2016) Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol 87:295–301

    Article  CAS  Google Scholar 

  • Barua S, Ramos J, Potta T, Taylor D, Huang H-C, Montanez G, Rege K (2011) Discovery of cationic polymers for non-viral gene delivery using combinatorial approaches. Comb Chem High Throughput Screen 14:908–924

    Article  CAS  Google Scholar 

  • Bernkop-Schnürch A (2018) Strategies to overcome the polycation dilemma in drug delivery. Adv Drug Deliv Rev 136–137:62–72

    Article  CAS  Google Scholar 

  • Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the Micro- and nanoscale to control cell function. Angew Chemie Int Ed 48:5406–5415

    Article  CAS  Google Scholar 

  • Bhatia S (2016) Nanotechnology and its drug delivery applications. Natural polymer drug delivery systems. Springer International Publishing, Cham, pp 1–32

    Chapter  Google Scholar 

  • Bisharat L, Barker SA, Narbad A, Craig DQM (2019) In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int J Pharm 556:311–319

    Article  CAS  Google Scholar 

  • Biswas S, Chattopadhyay M, Sen KK, Saha MK (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 121:403–410

    Article  CAS  Google Scholar 

  • Boncel S, Kyziol-Komosińska J, Krzyzewska I, Czupiol J (2015) Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems—a review. Chemosphere 136:211–221

    Article  CAS  Google Scholar 

  • Boonsongrit Y, Mueller BW, Mitrevej A (2008) Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur J Pharm Biopharm 69:388–395

    Article  CAS  Google Scholar 

  • Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, Puspitaninganindita K, Marvin HJP, Peijnenburg AACM, Hendriksen PJM (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103

    Article  CAS  Google Scholar 

  • Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN (2017) Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 10:11–21

    Article  CAS  Google Scholar 

  • Burapapadh K, Takeuchi H, Sriamornsak P (2016) Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian J Pharm Sci 11:365–375

    Article  Google Scholar 

  • Cambiaghi A, Medical E, Testing D (2018) Biological evaluation of medical devices as an essential part of the risk management process: updates and challenges of ISO 10993-1

    Google Scholar 

  • Campos EVR, Proença PLF, Oliveira JL, Melville CC, Vechia JFD, De Andrade DJ, Fraceto LF (2018) Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 8:1–15

    CAS  Google Scholar 

  • Cárdenas A, Higuera-Ciapara I, Goycoolea FM (1998) Rheology and aggregation of cactus (Opuntia). In: Advances in natural polymers: comosites and nanocomposites, pp. 152–159

    Google Scholar 

  • Cassano R, Trombino S, Ferrarelli T, Cavalcanti P, Giraldi C, Lai F, Loy G, Picci N (2012) Synthesis, characterization and in-vitro antitubercular activity of isoniazid-gelatin conjugate. J Pharm Pharmacol 64:712–718

    Article  CAS  Google Scholar 

  • Choudhary S, Kusum Devi V (2015) Potential of nanotechnology as a delivery platform against tuberculosis: current research review. J Control Release 202:65–75

    Article  CAS  Google Scholar 

  • Chung YI, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC (2010) The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release 143:374–382

    Article  CAS  Google Scholar 

  • Clogston JD, Patri AK (2011) Zeta potential measurement. In: Mcneil SE (ed) Characterization of nanoparticles intended for drug delivery. Springer, PP 63–70

    Google Scholar 

  • Crivelli B, Perteghella S, Bari E, Sorrenti M, Tripodo G, Chlapanidas T, Torre ML (2018) Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. Soft Matter 14:546–557

    Article  CAS  Google Scholar 

  • Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng, C 80:771–784

    Article  CAS  Google Scholar 

  • Dai L, Zhan X, Wei Y, Sun C, Mao L, McClements DJ, Gao Y (2018) Composite zein - propylene glycol alginate particles prepared using solvent evaporation: characterization and application as Pickering emulsion stabilizers. Food Hydrocoll 85:281–290

    Article  CAS  Google Scholar 

  • Damodaran VB, Bhatnagar D, Sanjeeva Murthy N (2016) Biomedical polymers synthesis and processing

    Google Scholar 

  • De Frates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X (2018) Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci 19:1–20

    Google Scholar 

  • Delcassian D, Patel AK, Cortinas AB, Langer R (2019) Drug delivery across length scales. J Drug Target 27:229–243

    Article  CAS  Google Scholar 

  • Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, Xiao X, Yang Y, Sheng W, Wu Y, Zeng Y (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35:4333–4344

    Article  CAS  Google Scholar 

  • Di Prima G, Conigliaro A, De Caro V (2019) Mucoadhesive polymeric films to enhance barbaloin penetration into buccal mucosa: a novel approach to chemoprevention. AAPS PharmSciTech 20:1–12

    Article  CAS  Google Scholar 

  • Diana V, Bossolasco P, Moscatelli D, Silani V, Cova L (2013) Dose dependent side effect of superparamagnetic iron oxide nanoparticle labeling on cell motility in two fetal stem cell populations. PLoS One 8

    Google Scholar 

  • Dickinson E (2017) Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll 68:219–231

    Article  CAS  Google Scholar 

  • Dosio F, Arpicco S, Stella B, Fattal E (2016) Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 97:204–236

    Article  CAS  Google Scholar 

  • Dragan ES, Dinu MV (2019) Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 225:115210

    Article  CAS  Google Scholar 

  • Dutta PK, Dutta J, Anal A (2013) Multifaceted development and application of biopolymers for biology, biomedicine and nanotechnology. Springer

    Google Scholar 

  • Eicher AC, Dobler D, Kiselmann C, Schmidts T, Runkel F (2019) Dermal delivery of therapeutic DNAzymes via chitosan hydrogels. Int J Pharm 563:208–216

    Article  CAS  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182

    Article  CAS  Google Scholar 

  • Elzoghby A, Freag M, Mamdouh H, Elkhodairy K (2018) Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des 23:5261–5271

    Article  Google Scholar 

  • Farris E, Brown DM, Ramer-Tait AE, Pannier AK (2017) Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J Control Release 249:150–161

    Article  CAS  Google Scholar 

  • Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, Radi L, Diken M, Strand D, Tuettenberg A, Wich PR, Schuppan D (2016) Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine 11:2663–2677

    Article  CAS  Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162

    Article  CAS  Google Scholar 

  • Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750

    Article  CAS  Google Scholar 

  • Fonseca DP, Khalil NM, Mainardes RM (2017) Bovine serum albumin-based nanoparticles containing resveratrol: characterization and antioxidant activity. J Drug Deliv Sci Technol 39:147–155

    Article  CAS  Google Scholar 

  • Foox M, Zilberman M (2015) Drug delivery from gelatin-based systems. Expert Opin Drug Deliv 12:1547–1563

    Article  CAS  Google Scholar 

  • Froehlich E, Fröhlich E (2016) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 5577–5591

    Google Scholar 

  • Fröhlich E (2016) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Google Scholar 

  • Gabriel T, Brhane Y, Gabriel T (2018) Recent advances in preparation and modification of gelatin nanoparticles for pharmaceutical applications. Int J Pharm Sci Nanotechnol 11:1–8

    Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  Google Scholar 

  • George B, Suchithra TV (2019) Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia 137

    Google Scholar 

  • George A, Shah PA, Shrivastav PS (2019) Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 561:244–264

    Article  CAS  Google Scholar 

  • Ghiorghita C-A, Bucatariu F, Dragan ES (2019) Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. Mater Sci Eng C 105:110050

    Article  CAS  Google Scholar 

  • Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:1–17

    Article  CAS  Google Scholar 

  • Goonoo N, Bhaw-Luximon A, Jhurry D (2014) In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications. RSC Adv 4:31618–31642

    Article  CAS  Google Scholar 

  • Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J (2018) A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed Pharmacother 107:96–108

    Article  CAS  Google Scholar 

  • Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res Part A 92:1265–1272

    Google Scholar 

  • Grobelny J, DelRio FW, Pradeep N, Kim D-I, Hackley V, Cppok R (2011) Size measurement of nanoparticles using atomic force microscopy. In: Mcneil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, pp 71–82

    Google Scholar 

  • Guo Z, Tan L (2009) Nanomaterials characterization. In: Fundamentals and applications of nanomaterials. Artech House, pp 75–92

    Google Scholar 

  • Guo C, Yarger JL (2018) Characterizing gold nanoparticles by NMR spectroscopy. Magn Reson Chem 56:1074–1082

    Article  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  CAS  Google Scholar 

  • Halappanavar S, Vogel U, Wallin H, Yauk CL (2018) Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:1–7

    Article  Google Scholar 

  • Hall JB, Mcneil SE (2007) Characterization of nanoparticles for therapeutics: physicochemical characterization 2:789–803

    CAS  Google Scholar 

  • Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L (2017.) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8

    Google Scholar 

  • Harris R, Lecumberri E, Mateos-Aparicio I, Mengíbar M, Heras A (2011) Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym 84:803–806

    Article  CAS  Google Scholar 

  • Harsha SN, Aldhubiab BE, Nair AB, Alhaider IA, Attimarad M, Venugopala KN, Srinivasan S, Gangadhar N, Asif AH (2015) Nanoparticle formulation by Büchi b-90 nano spray dryer for oral mucoadhesion. Drug Des Devel Ther 9:273–282

    Article  CAS  Google Scholar 

  • He M, Zhao Z, Yin L, Tang C, Yin C (2009) Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int J Pharm 373:165–173

    Article  CAS  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  CAS  Google Scholar 

  • Hembram KC, Prabha S, Chandra R, Ahmed B, Nimesh S (2016) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 44:305–314

    Article  CAS  Google Scholar 

  • Hernandez LM, Yousefi N, Tufenkji N (2017) Are there nanoplastics in your personal care products? Environ Sci Technol Lett 4:280–285

    Article  CAS  Google Scholar 

  • Hosseini M, Hamdy Makhlouf AS (2016) Industrial applications for intelligent polymers and coatings. Industrial applications for intelligent polymers and coatings

    Google Scholar 

  • Huang G, Huang H (2018) Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J Control Release 278:122–126

    Article  CAS  Google Scholar 

  • Hunt G, Lynch I, Cassee F, Handy RD, Fernandes TF, Berges M, Kuhlbusch TAJ, Dusinska M, Riediker M (2013) Towards a consensus view on understanding nanomaterials hazards and managing exposure: knowledge gaps and recommendations. Materials (Basel) 6:1090–1117

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitr 19:975–983

    Article  CAS  Google Scholar 

  • Irimia T, Dinu-Pîrvu CE, Ghica MV, Lupuleasa D, Muntean DL, Udeanu DI, Popa L (2018.) Chitosan-based in situ gels for ocular delivery of therapeutics: a state-of-the-art review. Mar Drugs 16

    Google Scholar 

  • Jani G, Shah D, Jain V, Patel M, Vithalani D (2007) Evaluating mucilage from Aloe Barbadensis Miller as a pharmaceutical excipient for sustained-release matrix tablets

    Google Scholar 

  • Jo DH, Kim Jin Hyoung, Lee TG, Kim Jeong Hun (2015) Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed Nanotechnol Biol Med 11:1603–1611

    Article  CAS  Google Scholar 

  • Kaleemullah M, Jiyauddin K, Thiban E, Rasha S, Al-Dhalli S, Budiasih S, Gamal OE, Fadli A, Eddy Y (2017) Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm J 25:770–779

    Article  CAS  Google Scholar 

  • Kanoujia J, Singh M, Singh P, Saraf SA (2016) Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater Sci Eng, C 69:967–976

    Article  CAS  Google Scholar 

  • Kathe N, Henriksen B, Chauhan H (2014) Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev Ind Pharm 40:1565–1575

    Article  CAS  Google Scholar 

  • Kaur M, Malik B, Garg T, Rath G, Goyal AK (2015) Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv 22:328–334

    Article  CAS  Google Scholar 

  • Kemp MM, Linhardt RJ (2009) Heparin-based nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:77–87

    Article  Google Scholar 

  • Khan SA, Schneider M (2013) Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol Biosci 13:455–463

    Article  CAS  Google Scholar 

  • Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE (2012) Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm 9:2856–2862

    Article  CAS  Google Scholar 

  • Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183

    Article  CAS  Google Scholar 

  • Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB (2017) Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 47:1–58

    Article  CAS  Google Scholar 

  • Kulkarni GT, Gowthamarajan K, Satish Kumar MN, Suresh B (2002) Vilages: therapeutic and pharmaceutical applications. Nat Prod Radiat 1:10–17

    Google Scholar 

  • Kumar R, Patil MB, Patil SR, Paschapur MS (2009) Evaluation of Abelmoschus esculentus mucilage as suspending agent in paracetamol suspension. Int J PharmTech Res 1:658–665

    CAS  Google Scholar 

  • Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M (2014) Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin Drug Deliv 11:1087–1101

    Article  CAS  Google Scholar 

  • Layek B, Singh J (2017) Chitosan for DNA and gene therapy, chitosan based biomaterials. Elsevier Ltd.

    Google Scholar 

  • Lertsutthiwong P, Rojsitthisak P, Nimmannit U (2009) Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Mater Sci Eng C 29:856–860

    Article  CAS  Google Scholar 

  • Lin WJ, Lee WC (2018) Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int J Nanomed 13:3989–4002

    Article  CAS  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22

    Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010a) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330

    Article  CAS  Google Scholar 

  • Liu Z, Zhang Z, Zhou C, Jiao Y (2010b) Hydrophobic modifications of cationic polymers for gene delivery. Prog Polym Sci 35:1144–1162

    Article  CAS  Google Scholar 

  • Long, JT, Cheang T, Zhuo SY, Zeng RF, Dai QS, Li HP, Fang S (2014) Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis. J Nanobiotechnol 12:1–11

    Google Scholar 

  • Lu X, Xiao J, Huang Q (2018a) Pickering emulsions stabilized by media-milled starch particles. Food Res Int 105:140–149

    Article  CAS  Google Scholar 

  • Lu X, Zhang H, Li Y, Huang Q (2018b) Fabrication of milled cellulose particles-stabilized pickering emulsions. Food Hydrocoll 77:427–435

    Article  CAS  Google Scholar 

  • Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  Google Scholar 

  • Luo Z, Dai Y, Gao H (2019) Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B

    Google Scholar 

  • Mahto A, Mishra S (2019) Design, development and validation of guar gum based pH sensitive drug delivery carrier via graft copolymerization reaction using microwave irradiations. Int J Biol Macromol 138:278–291

    Article  CAS  Google Scholar 

  • Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  CAS  Google Scholar 

  • Mohammed M, Mansell H, Shoker A, Wasan KM, Wasan EK (2019) Development and in vitro characterization of chitosan-coated polymeric nanoparticles for oral delivery and sustained release of the immunosuppressant drug mycophenolate mofetil. Drug Dev Ind Pharm 45:76–87

    Article  CAS  Google Scholar 

  • Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68:513–525

    CAS  Google Scholar 

  • Multur S (2004) Thermal analysis of composites using DSC. In: Kessler M (ed) Advanced topics in characterization of composites, pp 11–33

    Google Scholar 

  • Naskar S, Koutsu K, Sharma S (2019) Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target 27:379–393

    Article  CAS  Google Scholar 

  • Natterodt JC, Petri-Fink A, Weder C, Zoppe JO (2017) Cellulose nanocrystals: surface modification, applications and opportunities at interfaces. Chimia (Aarau) 71:376–383

    Article  CAS  Google Scholar 

  • Nazlı AB, Açıkel YS (2019) Loading of cancer drug resveratrol to pH-Sensitive, smart, alginate-chitosan hydrogels and investigation of controlled release kinetics. J Drug Deliv Sci Technol 53:101199

    Article  CAS  Google Scholar 

  • Nep EI, Mahdi MH, Adebisi AO, Ngwuluka NC, Conway BR, Smith AM, Asare-Addo K (2018) Hydro-alcoholic media effects on theophylline release from sesamum polysaccharide gum matrices. Drug Dev Ind Pharm 44:251–260

    Article  CAS  Google Scholar 

  • Niaounakis M (2015) Biopolymers : processing and products

    Google Scholar 

  • Nigatu AS, Ashar H, Sethuraman SN, Wardlow R, Maples D, Malayer J, Ranjan A (2018) Elastin-like polypeptide incorporated thermally sensitive liposome improve antibiotic therapy against musculoskeletal bacterial pathogens. Int J Hyperth 34:201–208

    Article  CAS  Google Scholar 

  • Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Bedoya LM, Tamayo A, Rubio J, Veiga MD (2017) Influence of chitosan swelling behaviour on controlled release of tenofovir from mucoadhesive vaginal systems for prevention of sexual transmission of HIV. Mar Drugs 15:1–16

    Article  CAS  Google Scholar 

  • Nyström AM, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161:403–408

    Article  CAS  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  CAS  Google Scholar 

  • Olatunji O (2015) Natural polymers: industry techniques and applications. Natural polymers: industry techniques and applications

    Google Scholar 

  • Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245

    Article  CAS  Google Scholar 

  • Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64:1417–1435

    Article  CAS  Google Scholar 

  • Powar TA, Hajare AA, Patil-Vibhute PB, Nadaf SJ, Jarag RJ (2017) Bioadhesive garlic and ketoconazole vaginal tablets for treatment of candidiasis. Indian J Pharm Educ Res 51:239–248

    Article  CAS  Google Scholar 

  • Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92:1685–1699

    Article  CAS  Google Scholar 

  • Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy—an overview. J Clin Diagnostic Res 9:GE01–GE06

    Google Scholar 

  • Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455:219–228

    Article  CAS  Google Scholar 

  • Ramteke S, Jain N (2008) Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. J Drug Target 16:65–72

    Article  CAS  Google Scholar 

  • Rao A, Schoenenberger M, Gnecco E, Glatzel T, Meyer E, Brändlin D, Scandella L (2007) Characterization of nanoparticles using atomic force microscopy. J Phys Conf Ser 61:971–976

    Article  CAS  Google Scholar 

  • Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F (2019) Particle toxicology and health—where are we? Particle and fibre toxicology

    Google Scholar 

  • Sahariah P, Másson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromol 18:3846–3868

    Article  CAS  Google Scholar 

  • Sahin A, Yoyen-Ermis D, Caban-Toktas S, Horzum U, Aktas Y, Couvreur P, Esendagli G, Capan Y (2017) Evaluation of brain-targeted chitosan nanoparticles through blood–brain barrier cerebral microvessel endothelial cells. J Microencapsul 34:659–666

    Article  CAS  Google Scholar 

  • Saidin NM, Anuar NK, Meor Mohd Affandi MMR (2018) Roles of polysaccharides in transdermal drug delivery system and future prospects. J Appl Pharm Sci 8:141–157

    CAS  Google Scholar 

  • Samimi S, Maghsoudnia N, Eftekhari R, Dorkoosh F (2019) Lipid-based nanoparticles for drug delivery systems. In: Mohapatra S, Ranjan S, Dasgupta N, Mishra R, Thomas S (eds) Characterization and biology of nanomaterials for drug delivery. Elsevier

    Google Scholar 

  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244

    Article  CAS  Google Scholar 

  • Saranya N, Moorthi A, Saravanan S, Devi MP, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238

    Article  CAS  Google Scholar 

  • Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP (2010) Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm 385:143–149

    Article  CAS  Google Scholar 

  • Sarkar A, Zhang S, Murray B, Russell JA, Boxal S (2017) Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces. Colloids Surfaces B Biointerfaces 158:137–146

    Article  CAS  Google Scholar 

  • Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1–7

    Article  CAS  Google Scholar 

  • Sharifi H, Nayebi AM, Farajnia S (2012) The effect of chronic administration of buspirone on 6-hydroxydopamine-induced catalepsy in rats. Adv Pharm Bull 2:127–131

    Google Scholar 

  • Shi Y, Xue J, Jia L, Du Q, Niu J, Zhang D (2018) Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloids Surfaces B Biointerfaces 161:67–72

    Google Scholar 

  • Shidhaye S, Kadam V, Desai A (2007) Possible use of psyllium husk as a release retardant. Indian J Pharm Sci 69:206

    Article  Google Scholar 

  • Singh B, Chauhan GS, Sharma DK, Kant A, Gupta I, Chauhan N (2006) The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels. Int J Pharm 325:15–25

    Article  CAS  Google Scholar 

  • Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, Lal UR (2019) Recent insights on nanomedicine for augmented infection control. Int J Nanomed 14:2301–2325

    Article  CAS  Google Scholar 

  • Sirisha VL, Campus K (2015) Polysaccharide nanoparticles: preparation and their potential application as drug delivery systems. Int J Res Appl Nat Soc Sci 3:69–94

    Google Scholar 

  • Sosnik A (2014) Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharm. 2014:1–17

    Google Scholar 

  • Sreenivasan R, Ghosh S, Abraham ET (2010) Preparation and characterization of guar gum nanoparticles. Int J Biol Macromol 46:267–269

    Article  CAS  Google Scholar 

  • Sun IC, Eun DK, Na JH, Lee S, Kim IIJ, Youn IC, Ko CY, Kim HS, Lim D, Choi K, Messersmith PB, Park TG, Kim SY, Kwon IC, Kim K, Ahn CH (2009) Heparin-coated gold nanopartieles for liver-specific CT imaging. Chem A Eur J 15:13341–13347

    Article  CAS  Google Scholar 

  • Teixeira FJ, Santos HO, Howell SL, Pimentel GD (2019) Whey protein in cancer therapy: a narrative review. Pharmacol Res 144:245–256

    Article  CAS  Google Scholar 

  • Teng Z, Luo Y, Wang T, Zhang B, Wang Q (2013) Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J Agric Food Chem 61:2556–2564

    Article  CAS  Google Scholar 

  • Thao LQ, Byeon HJ, Lee C, Lee S, Lee ES, Choi HG, Park ES, Youn YS (2016) Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm 497:268–276

    Article  CAS  Google Scholar 

  • Thomas S, Vissakh P, Mathew AP (2013) Advances in natural polymers: composites and nanocomposites, advanced structured materials

    Google Scholar 

  • Umamaheshwari RB, Ramteke S, Jain NK (2004) Anti-helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS PharmSciTech 5:60–68

    Article  Google Scholar 

  • Veerapandian, Yun K (2009) The state of the art in biomaterials as nanobiomaterials and nanopharmaceutics. Dig J Nanomater Biostructures 4:243–26

    Google Scholar 

  • Venkatesan J, Anil S, Singh SK, Kim S (2017) Preparations and applications of alginate nanoparticles. In: Venkatesan J, Anil S, Se-Kwon K (eds) Seaweed polysaccharides. Elsevier Inc., pp 249–266

    Google Scholar 

  • Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84:377–410

    Article  CAS  Google Scholar 

  • Vocelle D, Chesniak OM, Malefyt AP, Comiskey G, Adu-Berchie K, Smith MR, Chan C, Walton SP (2016) Dextran functionalization enhances nanoparticle-mediated siRNA delivery and silencing. Technology 04:42–54

    Article  Google Scholar 

  • Vo-Dinh T (2005) Protein nanotechnology: protocols, instrumentation, and applications. Human Press

    Google Scholar 

  • Wang ZL (2006) Scanning microscopy for nanotechnology. In: Zhou W, Wang ZL (eds) Fundamentals of scanning electron microscopy (SEM). Springer, pp 1–41

    Google Scholar 

  • Wang A, Li P, Dai Y, Zhang J, Wang Ai-qin, Wei Q (2015a) Chitosan-alginate nanoparticles as a novel drug delivery system for Nifedipine. Int J Biomed Sci 4:221–228

    Google Scholar 

  • Wang J, Wang M, Zheng M, Guo Q, Wang Y, Wang H, Xie X, Huang F, Gong R (2015b) Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery. Colloids Surfaces B Biointerfaces 129:63–70

    Article  CAS  Google Scholar 

  • Wang QS, Wang GF, Zhou J, Gao LN, Cui YL (2016) Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 515:176–185

    Article  CAS  Google Scholar 

  • Wang H, Zhang X, Zhu W, Jiang Y, Zhang Z (2018) Self-assembly of Zein-based microcarrier system for colon-targeted oral drug delivery. Ind Eng Chem Res 57:12689–12699

    Article  CAS  Google Scholar 

  • Wasiak I, Kulikowska A, Janczewska M, Michalak M, Cymerman IA, Nagalski A, Kallinger P, Szymanski WW, Ciach T (2016) Dextran nanoparticle synthesis and properties. PLoS ONE 11:1–17

    Article  CAS  Google Scholar 

  • Wei Y, Wang C, Jiang B, Sun CC, Middaugh CR (2019) Developing biologics tablets: the effects of compression on the structure and stability of bovine serum albumin and lysozyme. Mol Pharm 16:1119–1131

    Article  CAS  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  Google Scholar 

  • Wu P, Liu Q, Li R, Wang J, Zhen X, Yue G, Wang H, Cui F, Wu F, Yang M, Qian X, Yu L, Jiang X, Liu B (2013a) Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces 5:12638–12645

    Article  CAS  Google Scholar 

  • Wu F, Zhou Z, Su J, Wei L, Yuan W, Jin T (2013b) Development of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Res Lett 8:1–8

    Article  CAS  Google Scholar 

  • Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D (2015) Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7:17745–17755

    Article  CAS  Google Scholar 

  • Xu R (2008) Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 6:112–115

    Article  CAS  Google Scholar 

  • Xu W, Jin W, Li Z, Liang H, Wang Y, Shah BR, Li Y, Li B (2015) Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res Int 71:83–90

    Article  CAS  Google Scholar 

  • Yang TT, Wen BF, Liu K, Qin M, Gao YY, Ding DJ, Li WT, Zhang YX, Zhang WF (2018) Cyclosporine A/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system. Artif Cells Nanomed Biotechnol 46:552–564

    Article  CAS  Google Scholar 

  • Yasmin R, Shah M, Khan SA, Ali R (2017) Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnol Rev 6:191–207

    Article  CAS  Google Scholar 

  • Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, Leary JF, Park K, Yuk SH, Park JH, Choi K (2012) Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 33:3980–3989

    Article  CAS  Google Scholar 

  • Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromol 12:2440–2446

    Article  CAS  Google Scholar 

  • Zhang W, Torabinejad M, Li Y (2003) Evaluation of cytotoxicity of MTAD using the MTT-tetrazolium method. J Endod 29:654–657

    Article  Google Scholar 

  • Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55:283–291

    Article  CAS  Google Scholar 

  • Zhang CL, Jiang HS, Gu SP, Zhou XH, Lu ZW, Kang XH, Yin L, Huang J (2019a) Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environ Pollut 252:1539–1549

    Article  CAS  Google Scholar 

  • Zhang L, Xu J, Wen Q, Ni C (2019b) Preparation of xanthan gum nanogels and their pH/redox responsiveness in controlled release. J Appl Polym Sci 136:6–11

    Article  Google Scholar 

  • Zhao XJ, Zhou ZQ (2016) Synthesis and applications of pectin-based nanomaterials. Curr Nanosci 12:103–109

    Article  CAS  Google Scholar 

  • Zhao YZ, Jin RR, Yang W, Xiang Q, Yu WZ, Lin Q, Tian FR, Mao KL, Lv CZ, Wáng YXJ, Lu CT (2016) Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PLoS ONE 11:1–18

    Google Scholar 

  • Zu M, Ma L, Zhang X, Xie D, Kang Y, Xiao B (2019) Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids Surfaces B Biointerfaces 177:399–406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Quintanar-Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leyva-Gómez, G., Mendoza-Muñoz, N., Del Prado-Audelo, M.L., Ojeda-Piedra, S.A., Zambrano-Zaragoza, M.L., Quintanar-Guerrero, D. (2021). Natural Polymers in Pharmaceutical Nanotechnology. In: Nascimento, R.F.d., Neto, V.d.O.S., Fechine, P.B.A., Freire, P.d.T.C. (eds) Nanomaterials and Nanotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6056-3_6

Download citation

Publish with us

Policies and ethics