Skip to main content

THz Nondestructive Imaging for Historical Arts

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence
  • 28 Accesses

Abstract

Since historical artworks are unique, nondestructive and noncontact measurements are desired in the field of heritage science. Thus, electromagnetic techniques, such as radar remote sensing and X-ray tomography, are suitable for observing the internal structure of heritage objects. THz time-domain imaging allows the observation of the internal structure of a painting composed of preparation and support layers, which conservators desire to see even if they must take a small sample. The most important advantage of THz time-domain imaging is the ability to observe a cross-sectional image without cutting, as well as to obtain areal information at any depth from the surface. About 15 years ago, a portable, turnkey-type THz time-domain imaging system became commercially available, and the first on-site observation in a museum was carried out at the Uffizi Gallery in Florence, Italy, in 2008. Since then, THz time-domain imaging has been applied to historical objects and artworks, including Egyptian mummies, tempera panel paintings from the Renaissance, Japanese panel screens, and contemporary paintings on canvas. Case studies introduced in this chapter proved that THz time-domain imaging contributes to conservation planning by practical evaluation of the physical condition of artworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Pinna, M. Galeotti, A. Mazzeo, Scientific Examination for the Investigation of Paintings. A Handbook for Conservator-restorers (Centro Di, Firenze, 2009)

    Google Scholar 

  2. N. Masini, F. Soldavieri (eds.), Sensing the Past (Springer, 2017)

    Google Scholar 

  3. A. Anitha, A. Brasoveanu, M. Duarte, S. Hughes, I. Daubechies, J. Dik, K. Janssens, M. Alfeld, Restoration of X-ray fluorescence images of hidden paintings. Signal Processing 93, 592–604 (2013)

    Article  Google Scholar 

  4. J.K. Delaney, K.A. Dooley, A. van Loon, A. Vandivere, Mapping the pigment distribution of Vermeer’s girl with a pearl earring. Heritage Science 8(4) (2020)

    Google Scholar 

  5. Germanisches National Museum, Musical Instrument computed tomography examination standard (MUSICES) project, http://www.gnm.de/research/research-project/musices/

  6. J.R. Wiseman, F. El-Baz, Remote Sensing in Archaeology (Springer, 2007)

    Book  Google Scholar 

  7. C. Karr Jr., J.J. Kovach, Far-infrared spectroscopy of minerals and inorganics. Applied Spectroscopy 23, 219–223 (1969)

    Article  ADS  Google Scholar 

  8. H.D. Riccius, K.J. Siemsen, Infrared lattice bands of trigonal and cubic mercury sulfide. Journal of Chemical Physics 52, 4090–4093 (1969)

    Article  ADS  Google Scholar 

  9. W. Köhler, M. Panzner, U. Klotzbach, E. Beyer, S.S. Winnerl, M. Helm, F. Rutz, C. Jördens, M. Koch, H. Leitner, Non-destructive Investigation of Paintings with THz-radiation, in 9th European Conference on NDT, ECNDT, No. 181 (Berlin, 2006)

    Google Scholar 

  10. K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, Terahertz spectroscopy for art conservation. IEICE Electronics Express 4, 258–263 (2007)

    Article  Google Scholar 

  11. K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, Application of terahertz spectroscopy for character recognition in a medieval manuscript. IEICE Electronics Express 5, 223–228 (2008)

    Article  Google Scholar 

  12. K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, X. Du, Terahertz analysis of an East Asian historical mural painting. Journal of the European Optical Society, Rapid Publications 5(10024) (2010)

    Google Scholar 

  13. D.M. Mittleman, Twenty years of terahertz imaging. Optics Express 26, 9417–9431 (2018)

    Article  ADS  Google Scholar 

  14. I.N. Duling, D. Zimdars, Terahertz imaging: revealing hidden defects. Nature Photonics 3, 630–632 (2009)

    Article  ADS  Google Scholar 

  15. K. Fukunaga, THz Technology applied to Cultural Heritage in Practice (Springer, 2016)

    Book  Google Scholar 

  16. H. Liang, M.G. Cid, R.G. Cucu, G.M. Dobre, A.G. Podoleanu, J. Pedro, D. Saunders, En-face optical coherence tomography – a novel application of non-invasive imaging to art conservation. Optics Express 13, 6133–6144 (2005)

    Article  ADS  Google Scholar 

  17. M.-J. Kim, Y. Kohdzuma, K. Fukunaga, Application of Terahertz Wave Imaging Technique to Structural Survey of a Historical Painting on Silk. Proceedings of Asia-Pacific Microwave Photonics Conference, No. MC-5 (2013)

    Google Scholar 

  18. K. Krügener, M. Schwerdtfeger, S. Busch, et al., Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology. Scientific Reports 5(14842) (2015)

    Google Scholar 

  19. J. Dong, A. Locquet, M. Melis, et al., Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry. Scientific Reports 7(15098) (2017)

    Google Scholar 

  20. T. Meng, R. Huang, Y. Lu, et al., Highly sensitive terahertz non-destructive testing technology for stone relics deterioration prediction using SVM-based machine learning models. Heritage Science 9(24) (2021)

    Google Scholar 

  21. J.B. Jackson, M. Mourou, J. Labaune, J.F. Whitaker, I.N. Duling, S.L. Williamson, C. Lavier, M. Menu, G. Mourou, Terahertz pulse imaging for tree-ring analysis: a preliminary study for dendrochronology applications. Measurement Science and Technology 20(075502) (2009)

    Google Scholar 

  22. A. Tartuferi (ed.), Giotto, Il Restauro del Polittico di Badia (Mandoragora, Firenze, 2012)

    Google Scholar 

  23. A. Mänd, A. Nurkse, Family ties and the commissioning of art: on the donors and overpaintings of the Netherlandish Passion Altarpiece. Kunstiteaduslikke Uurimusi/Studies on Art and Architecture 22, 115–148 (2013)

    Google Scholar 

  24. K. Fukunaga, H. Hiilop, E.L. Holmstöm, T. Saaret, A. Uueni, Internal layer extraction of a panel painting by using THz time domain imaging. Proceeding of LACONA XII, 104–105 (2018)

    Google Scholar 

  25. G.C. Walker, J.W. Bowen, J.-B. Jackson, J. Labaune, G. Mourou, M. Menu, W. Matthews, I. Hodder, Sub-Surface Terahertz Imaging Through Uneven Surfaces: Visualizing Neolithic Wall Paintings in Çatalhöyük. Proceedings of CLEO: Science and Innovations, No. CTu3B (2012)

    Google Scholar 

  26. G. Basile, M. Marabelli (eds.), Leonardo. L’ultima cena. Indagini, ricerche, restauro (Nardini, Firenze, 2008)

    Google Scholar 

  27. K. Fukunaga, I. Hosako, M. Palazzo, L. Dall’Aglio, F. Aramini, C. Cucci, M. Picollo, T. Ikari, I.N. Duling, Terahertz Time-Domain Imaging of “The Last Supper”. Proceedings of IRMMW-THz (2020)

    Google Scholar 

  28. M. Tamassia (ed.), Salve Mater L’Annunciazione di Beato Angelico a San Marco (Sillabe, Livorno, 2017)

    Google Scholar 

  29. I. Catapano, G. Ludeno, C. Cucci, M. Picollo, L. Stefani, K. Fukunaga, Noninvasive analytical and diagnostic technologies for studying early renaissance wall paintings. Surveys in Geophysics 41, 669–693 (2020)

    Article  ADS  Google Scholar 

  30. K. Fukunaga, T. Ikari, K. Iwai, THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso. Applied Physics A 122, 1–5 (2016)

    Article  Google Scholar 

  31. F. Cassadio, V. Rose, High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Applied Physics A 111, 1–8 (2013)

    Article  Google Scholar 

  32. C. Zervos, Pablo Picasso par Christian Zervos, vol 29 (Editions Cahiers d’Art, Paris, 1975), p. 68

    Google Scholar 

  33. P. Daix, J. Rosselet, Le Cubisme de Picasso (Editions Ides et Calendes, Neuchâtel, 1979), p. 352

    Google Scholar 

  34. J. Richardson, A Life of Picasso, vol 2 (Jonathan Cape, London, 1996), p. 350

    Google Scholar 

  35. G.D. Klimann, Method of conserving and restoring oil paintings, U.S. Patent No. US3258376A (1966)

    Google Scholar 

  36. M.F. Mecklenburg, J.E. Webster, Honeycomb supports: their fabrication and use in painting conservation. Studies in Conservation 22, 177–189 (1977)

    Google Scholar 

  37. K. Fukunaga, Y. Ueno, Y. Ito, Investigation of Multi-layered 20th Century Painting by THz Imaging. Proceedings of IRMMW-THz (2019)

    Google Scholar 

  38. C. Books, C. Long, G. Pocobene, The Lining of Canvas onto Aluminum Sheet Interleafs: History and Approaches for Their Reversal. AIC’s 47th Annual Meeting, No. 19110 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Fukunaga .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fukunaga, K. (2023). THz Nondestructive Imaging for Historical Arts. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics