Skip to main content

Graphene Based Aluminum Matrix Hybrid Nano Composites

  • Chapter
  • First Online:
Graphene and Nanoparticles Hybrid Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

Abstract

There is a growing demand for the light weight nano composite materials for advanced material applications, such as aerospace, automobile, electrical appliances, biomedical etc. because of their high specific strength/stiffness, improved temperature stability, improved wear and corrosion resistance etc. Properties of aluminum matrix can be significantly improved with well dispersed/distributed low concentration of nano reinforcements. Various types of carbon based nano reinforcements such as carbon nanotube, graphene, carbon nanofibers, fullerenes etc. are widely used for the fabrication of advanced metal matrix nano composites materials. This chapter discusses graphene based aluminum matrix hybrid nano composites for the applications in advanced material fields. Starting with the graphene as a prospective nano reinforcement for the hybrid nano composites, various common methods for the manufacturing of hybrid nano composites, mechanism of reinforcement dispersion/distribution in the hybrid nano composites are discussed. This followed by microstructure and properties of hybrid nano composites are included. The chapter has been concluded with few prospective applications of graphene based aluminum matrix hybrid nano composites in advanced materials fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pisarevskaya EY, Makarychev YB, Dremova NN, Girina GP, Efimov ON (2018) A study of a novel nanocomposite material based on reduced graphene oxide and poly(o-phenylenediamine). Prot Met Phys Chem Surf 54(3):393–401

    Article  CAS  Google Scholar 

  2. Huang JY, Limqueco J, Chieng YY, Li X, Zhou WB (2017) Performance evaluation of a novel food packaging material based on clay/polyvinyl alcohol nanocomposite. Innov Food Sci Emerg Technol 43:216–222

    Article  CAS  Google Scholar 

  3. Sagnelli D et al (2019) Starch/poly (glycerol-adipate) nanocomposite film as novel biocompatible materials. Coatings 9(8). Art. no. 482

    Google Scholar 

  4. Gamboa RAM, Jaramillo-Quintero OA, Altamirano YAA, Concha-Guzman MO, Rincon ME (2019) A novel nanocomposite based on NiOx-incorporated P3HT as hole transport material for Sb2S3 solar cells with enhanced device performance. J Colloid Interface Sci 535:400–407

    Article  CAS  Google Scholar 

  5. Al-Amshany ZM, Hussein MA (2018) Novel Pd/ZnWO4 nanocomposite materials for photocatalytic degradation of atrazine. Appl Nanosci 8(3):527–536

    Article  CAS  Google Scholar 

  6. Li T, Wang ZX, Yu JR, Wang Y, Zhu J, Hu ZM (2019) Cu (II) coordination modification of aramid fiber and effect on interfacial adhesion of composites. High Perform Polym 31(9–10):1054–1061

    Article  CAS  Google Scholar 

  7. Wang HX et al (2019) Stress dependence of indentation modulus for carbon fiber in polymer composite. Sci Technol Adv Mater 20(1):412–420

    Article  CAS  Google Scholar 

  8. Li SP et al (2019) The microstructure and mechanical properties of Mg2B2O5 whisker-reinforced ZK60 composites fabricated by powder metallurgy. Mater Res Exp 6(9). Art. no. 0965b9

    Google Scholar 

  9. Wang XC et al (2019) High impact strength for polypropylene/titanate whisker composites with dual compatibilizing agents. Polym Compos 40(9):3421–3428

    Article  CAS  Google Scholar 

  10. Subramaniam B, Natarajan B, Kaliyaperumal B, Chelladurai SJS (2019) Wear behaviour of aluminium 7075-boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites. Mater Res Exp 6(10). Art. no. 1065d3

    Google Scholar 

  11. Zhou HB et al (2019) Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites. Tribol Int 138:380–391

    Article  CAS  Google Scholar 

  12. Singh MK, Gautam RK (2019) Structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites. J Mater Eng Perform 28(2):886–899

    Article  CAS  Google Scholar 

  13. Zhou FM, Zhang HX, Sun CX, Dai J (2019) Microstructure and wear properties of multi ceramics reinforced metal-matrix composite coatings on Ti–6Al–4V alloy fabricated by laser surface alloying. Surf Eng 35(8):683–691

    Article  CAS  Google Scholar 

  14. Dong SH, Zhou JQ, Hui D, Wang L (2015) Fracture toughness of nanocrystalline metal matrix composites reinforced by aligned carbon nanotubes. J Mater Res 30(21):3267–3276

    Article  CAS  Google Scholar 

  15. Chandio AD, Ansari MB, Hussain S, Siddiqui MA (2019) Silicon carbide effect as reinforcement on aluminium metal matrix composite. J Chem Soc Pak 41(4):650–654

    CAS  Google Scholar 

  16. Reddy PS, Kesavan R, Ramnath BV (2018) Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composite. Silicon 10(2):495–502

    Article  CAS  Google Scholar 

  17. Venkatesh R, Rao VS (2018) Thermal, corrosion and wear analysis of copper based metal matrix composites reinforced with alumina and graphite. Def Technol 14(4):346–355

    Article  Google Scholar 

  18. Saheb N et al (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater. Art. no. 983470

    Google Scholar 

  19. Aybarc U, Dispinar D, Seydibeyoglu MO (2018) Aluminum metal matrix composites with SiC, Al2O3 and graphene—review. Arch Foundry Eng 18(2):5–10

    CAS  Google Scholar 

  20. Bhoi NK, Singh H, Pratap S (2020) Developments in the aluminum metal matrix composites reinforced by micro/nano particles—a review. J Compos Mater 54(6):813–833

    Google Scholar 

  21. Pasha BAM, Kaleemulla M (2018) Processing and characterization of aluminum metal matrix composites: an overview. Rev Adv Mater Sci 56(1):79–90

    Article  Google Scholar 

  22. Schmidt A, Siebeck S, Gotze U, Wagner G, Nestler D (2018) Particle-reinforced aluminum matrix composites (AMCs)-selected results of an integrated technology, user, and market analysis and forecast. Metals 8(2). Art. no. 143

    Google Scholar 

  23. Lu ZZ et al (2019) Fabrication and mechanical properties of carbon fiber-reinforced aluminum matrix composites with Cu interphase. Acta Metall Sin 55(3):317–324 (in Chinese)

    CAS  Google Scholar 

  24. Muley AV, Aravindan S, Singh IP (2015) Nano and hybrid aluminum based metal matrix composites: an overview. Manuf Rev 2. Art. no. 15

    Google Scholar 

  25. Harrigan WC (1998) Commercial processing of metal matrix composites. Mater Sci Eng A 244(1):75–79

    Article  Google Scholar 

  26. Bose S, Pandey A, Mondal A (2018) Comparative analysis on aluminum-silicon carbide hybrid green metal matrix composite materials using waste egg shells and snail shell ash as reinforcements. Mater Today-Proc Proc Pap 5(14):27757–27766

    Article  CAS  Google Scholar 

  27. Reddy AP, Krishna PV, Rao RN (2017) Al/SiCNP and Al/SiCNP/X nanocomposites fabrication and properties: a review. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 231(4):155–172

    CAS  Google Scholar 

  28. Yarahmadi A, Rajabi M, Noghani MT, Taghiabadi R (2019) Synthesis of aluminum-CNTs composites using double-pressing double-sintering method (DPDS). J Nanostruct 9(1):94–102

    CAS  Google Scholar 

  29. Ciomaga CE et al (2019) Functional properties of percolative CoFe2O4-PbTiO3 composite ceramics. J Alloy Compd 775:90–99

    Article  CAS  Google Scholar 

  30. Girisha L, Deshpande M, Naik GL, Mahanthesh MR (2019) Mechanical characterization of nanomaterial reinforced aluminum-based hybrid nanocomposites. Adv Nano Res 2(1):32–41

    Google Scholar 

  31. Moskalyuk OA, Tsobkallo ES, Yudin VE, Shibanova AV, Malafeev KV, Morganti P (2018) Effect of functional disperse fillers on mechanical properties of fibrous polymeric composite materials. Fibre Chem 50(3):209–214

    Article  CAS  Google Scholar 

  32. Takagi H (2019) Review of functional properties of natural fiber-reinforced polymer composites: thermal insulation, biodegradation and vibration damping properties. Adv Compos Mater 28(5):525–543

    Article  CAS  Google Scholar 

  33. Singh R, Singh B, Tarannum H (2019) Mechanical properties of jute fiber-reinforced UP/PU hybrid network composites. Polym Polym Compos 27(9):546–556

    CAS  Google Scholar 

  34. Alibeigloo A (2018) Coupled thermoelasticity analysis of carbon nano tube reinforced composite rectangular plate subjected to thermal shock. Compos Part B-Eng 153:445–455

    Article  CAS  Google Scholar 

  35. Kawabata K, Sato E, Kuribayashi K (2002) Creep deformation behavior of spherical Al2O3 particle-reinforced Al–Mg matrix composites at high temperatures. Acta Mater 50(13):3465–3474

    Google Scholar 

  36. Kondo S, Ohkawa S, Uo M, Sugawara T, Watari F (1996) Fracture toughness of spherical silica reinforced composite resin. J Dent Res 75:2192–2192

    Google Scholar 

  37. El-Sabbagh SH, Mahmoud DS, Ahmed NM, Ward AA, Sabaa MW (2017) Composites of styrene butadiene rubber/modified clay: mechanical, dielectric and morphological properties. Pigm Resin Technol 46(3):161–171

    Article  Google Scholar 

  38. Lin W, Shi QQ, Chen H, Wang JN (2019) Mechanical properties of carbon nanotube fibers reinforced epoxy resin composite films prepared by wet winding. Carbon 153:308–314

    Article  CAS  Google Scholar 

  39. Liu et al YX (2019) Effects of micron heterogeneous metal particles on the microstructure and mechanical properties of 7075Al hybrid composites. J Alloy Compd 808. Art. no. 151727

    Google Scholar 

  40. Ahmadi M, Ansari R, Hassanzadeh-Aghdam MK (2019) Finite element analysis of thermal conductivities of unidirectional multiphase composites. Compos Interfaces 26(12):1035–1055

    Article  CAS  Google Scholar 

  41. Liu W, Bian LC (2019) A new energy-based effective strain theory for mechanical properties of multiphase composites. Eur J Mech A-Solids 76:279–289

    Article  Google Scholar 

  42. Andrew JJ, Srinivasan SM, Arockiarajan A, Dhakal HN (2019) Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: a critical review. Compos Struct 224. Art. no. 111007

    Google Scholar 

  43. Chen YF et al (2019) Yield and failure theory for unidirectional polymer-matrix composites. Compos Part B-Eng 164:612–619

    Article  CAS  Google Scholar 

  44. Li LB (2019) Time-dependent damage and fracture of fiber-reinforced ceramic-matrix composites at elevated temperatures. Compos Interfaces 26(11):963–988

    Article  CAS  Google Scholar 

  45. Jayaseelan P, Christy TV, Vijay SJ, Nelson R (2019) Effect of tool material, profile and D/d ratio in friction stir welding of aluminium metal matrix composites. Mater Res Exp 6(9). Art. no. 096590

    Google Scholar 

  46. Satyanarayana T, Rao PS, Krishna MG (2019) Influence of wear parameters on friction performance of A356 aluminum-graphite/granite particles reinforced metal matrix hybrid composites. Heliyon 5(6). Art. no. e01770

    Google Scholar 

  47. Chelliah NM, Pambannan P, Surappa MK (2019) Effects of processing conditions on solidification characteristics and mechanical properties of in situ magnesium metal matrix composites derived from polysilazane precursor. J Compos Mater 53(26–27):3741–3755

    Article  CAS  Google Scholar 

  48. Niknam SA, Saberi M, Kouam J, Hashemi R, Songmene V, Balazinski M (2019) Ultrafine and fine particle emission in turning titanium metal matrix composite (Ti-MMC). J Central South Univ 26(6):1563–1572

    Article  CAS  Google Scholar 

  49. Sangeethkumar E, Jaikumar M, Sridath KMN, Ramanathan V, Sathyamurthy R (2019) Tribological study on hybrid metal matrix composites for application in automotive sector. Mater Res Exp 6(5). Art. no. 055703

    Google Scholar 

  50. Munisamy B, Madhavan VRB, Chinnadurai E, Janardhanan J (2019) Prediction of mechanical properties of Al6061 metal matrix composites reinforced with zircon sand and boron carbide. Mater Test 61(6):537–542

    Article  CAS  Google Scholar 

  51. Ranganath G, Sharma SC, Krishna M, Muruli MS (2002) A study of mechanical properties and fractography of ZA-27/titanium-dioxide metal matrix composites. J Mater Eng Perform 11(4):408–413

    Article  CAS  Google Scholar 

  52. Aristizabal K, Katzensteiner A, Leoni M, Mucklich F, Suarez S (2019) Evolution of the lattice defects and crystalline domain size in carbon nanotube metal matrix composites processed by severe plastic deformation. Mater Charact 154:344–352

    Article  CAS  Google Scholar 

  53. Cao HJ et al (2019) Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: an approach beyond surface metallization and matrix alloying. Carbon 150:60–68

    Article  CAS  Google Scholar 

  54. Jang JH, Han KS (2007) Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics. J Compos Mater 41(12):1431–1443

    Article  CAS  Google Scholar 

  55. da Silva CC, Volpato GM, Fredel MC, Tetzlaff U (2019) Low-pressure processing and microstructural evaluation of unidirectional carbon fiber-reinforced aluminum-nickel matrix composites. J Mater Process Technol 269:10–15

    Article  CAS  Google Scholar 

  56. Wang FC, Li JJ, Shi CS, Liu EZ, He CN, Zhao NQ (2019) In-situ synthesis of MgAlB4 whiskers as a promising reinforcement for aluminum matrix composites. Mater Sci Eng A-Struct Mater Prop Microstruct Process 764. Art. no. 138229

    Google Scholar 

  57. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana-Acad Proc Eng Sci 28:319–334

    CAS  Google Scholar 

  58. Malaki M et al (2019) Advanced metal matrix nanocomposites. Metals 9(3). Art. no. 330

    Google Scholar 

  59. Chen LG, Lin SJ, Chang SY (2006) Tensile properties and thermal expansion behaviors of continuous molybdenum fiber reinforced aluminum matrix composites. Compos Sci Technol 66(11–12):1793–1802

    Article  CAS  Google Scholar 

  60. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28

    Article  CAS  Google Scholar 

  61. Coroş M, Pogăcean F, Măgeruşan L, Socaci C, Pruneanu S (2019) A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front Mater Sci J 13(1):23–32

    Article  Google Scholar 

  62. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9(16):8778–8881

    Article  CAS  Google Scholar 

  63. De Marchi L, Pretti C, Gabriel B, Marques PAAP, Freitas R, Neto V (2018) An overview of graphene materials: properties, applications and toxicity on aquatic environments. Sci Total Env 631–632:1440–1456

    Article  CAS  Google Scholar 

  64. Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett J 10(3). Art. no. 53

    Article  CAS  Google Scholar 

  65. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  66. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. Art. no. 676815

    Google Scholar 

  67. Donaldson K et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  CAS  Google Scholar 

  68. Nassar AE, Nassar EE (2017) Properties of aluminum matrix nano composites prepared by powder metallurgy processing. J King Saud Univ Eng Sci 29(3):295–299

    Google Scholar 

  69. Maleki A, Taherizadeh AR, Issa HK, Niroumand B, Allafchian AR, Ghaei A (2018) Development of a new magnetic aluminum matrix nanocomposite. Ceram Int 44(13):15079–15085

    Article  CAS  Google Scholar 

  70. Mekhzoum MEM, Essabir H, Rodrigue D, el Kacem Qaiss A, Bouhfid R (2018) Graphene/montmorillonite hybrid nanocomposites based on polypropylene: morphological, mechanical, and rheological properties. Polym Compos 39(6):2046–2053

    Article  CAS  Google Scholar 

  71. Zhao S et al (2018) Synergistic effect of graphene and silicon dioxide hybrids through hydrogen bonding self-assembly in elastomer composites. Rsc Adv 8(32):17813–17825

    Article  CAS  Google Scholar 

  72. Saba N, Jawaid M (2019) Functionalized graphene reinforced hybrid nanocomposites and their applications. In: Jawaid M, Bouhfid R, el Kacem Qaiss A (eds) Functionalized graphene nanocomposites and their derivatives. Elsevier, pp. 205–218 (Chapter 10)

    Google Scholar 

  73. Sharifi EM, Karimzadeh F (2011) Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy. Wear 271(7):1072–1079

    Article  CAS  Google Scholar 

  74. Jauhari S, Kumar HGP, Xavior MA (2016) Synthesis and characterization of AA 6061-Graphene-SiC hybrid nanocomposites processed through microwave sintering. IOP Conf Ser: Mater Sci Eng 149. Art. no. 012086

    Google Scholar 

  75. Zeng X, Liu W, Xu B, Shu GG, Li QL (2018) Microstructure and mechanical properties of Al-SiC nanocomposites synthesized by surface-modified aluminium powder. Metals 8(4). Art. no. 253

    Google Scholar 

  76. Fadavi Boostani A et al (2015) Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A Appl Sci Manufact 68:155–163

    Article  CAS  Google Scholar 

  77. Agarwal P, Kishore A, Kumar V, Soni SK, Thomas B (2019) Fabrication and machinability analysis of squeeze cast Al 7075/h-BN/graphene hybrid nanocomposite. Eng Res Exp 1(1). Art no. 015004

    Google Scholar 

  78. Du XM, Zheng KF, Zhao T, Liu FG (2018) Fabrication and characterization of Al 7075 hybrid composite reinforced with graphene and SiC nanoparticles by powder metallurgy. Dig J Nanomater Biostruct 13(4):1133–1140

    Google Scholar 

  79. Ghasali E, Sangpour P, Jam A, Rajaei H, Shirvanimoghaddam K, Ebadzadeh T (2018) Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Arch Civ Mech Eng 18(4):1042–1054

    Article  Google Scholar 

  80. Liu XH et al (2019) Synergistic strengthening effect of alumina anchored graphene nanosheets hybrid structure in aluminum matrix composites. Fullerenes Nanotubes Carbon Nanostruct 27(8):640–649

    Article  CAS  Google Scholar 

  81. Yaqoob B, Pasha RA, Awang M, Nasir MA, Hussain A, Nazir K (2019) Comparison of mixing strategies and hybrid ratio optimization for mechanical properties enhancement of Al-CeO2-GNP’s metal matrix composite fabricated by friction stir processing. Metall Microstruct Anal 8(4):534–544

    Article  CAS  Google Scholar 

  82. Li Z, Fan GL, Guo Q, Li ZQ, Su YS, Zhang D (2015) Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95:419–427

    Google Scholar 

  83. Wang J, Zhang X, Zhao NQ, He CN (2019) In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility. J Mater Sci 54(7):5498–5512

    Article  CAS  Google Scholar 

  84. Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4(1):65–83

    Article  CAS  Google Scholar 

  85. Xavior MA, Kumar JPA (2017) Machinability of hybrid metal matrix composite—a review. In: Yeh WC, Zhao L (eds) 13th global congress on manufacturing and management, vol 174. Procedia engineering, pp 1110–1118

    Google Scholar 

  86. Arif S, Alam T, Ansari AH, Shaikh MBN (2019) Morphological characterization, statistical modelling and tribological behaviour of aluminum hybrid nanocomposites reinforced with micro-nano-silicon carbide. J Asian Ceram Soc, 1–15

    Google Scholar 

  87. Vaziri HS, Shokuhfar A (2019) Synthesis of nanoalumina/graphene oxide hybrid for improvement tribological property of aluminum. Trans Indian Inst Metal 72(7):1687–1695

    Article  CAS  Google Scholar 

  88. Zeng X, Yu JG, Fu DF, Zhang H, Teng J (2018) Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates. Vacuum 155:364–375

    Article  CAS  Google Scholar 

  89. Saboori A, Pavese M, Badini C, Fino P (2017) Microstructure and thermal conductivity of Al-graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall Sin-Engl Lett 30(7):675–687

    Article  CAS  Google Scholar 

  90. Elshina LA, Muradymov RV, Kvashnichev AG, Vichuzhanin DI, Molchanova NG, Pankratov AA (2017) Synthesis of new metal-matrix Al-Al2O3-graphene composite materials. Russ Metall 8:631–641

    Article  Google Scholar 

  91. Shtein M, Nadiv R, Buzaglo M, Regev O (2015) Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl Mater Interfaces 7(42):23725–23730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S. (2021). Graphene Based Aluminum Matrix Hybrid Nano Composites. In: Qaiss, A.e.K., Bouhfid, R., Jawaid, M. (eds) Graphene and Nanoparticles Hybrid Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-33-4988-9_12

Download citation

Publish with us

Policies and ethics