Skip to main content

Event-Based Cooperative Control Framework for Robot Teams

  • Conference paper
  • First Online:
Robotics and Rehabilitation Intelligence (ICRRI 2020)

Abstract

Efficient and autonomous execution of large-scale missions using a group of robots implies the use of an advanced control system, usually consisting of multiple subsystems arranged in a hierarchy. For the purpose of unification of interaction of separate subsystems, an event-based cooperative control framework for robot teams is developed. In the paper, we demonstrate how this framework can be used in solving challenging problems in robotics: path-following problem, real-time path-planning problem, group routing problem, and action-planning problem. A novel approach to formalization and analysis of logic discrete event systems, which are the main component of the framework, based on logic calculus and automatic theorem proving is also briefly described.

The event-triggered control framework has been mostly designed under support of the RFBR (Projects No. 20-07-00397 and No. 19-08-00746). Results of Sects. 4, 7 have been obtained under support of the Russian Science Foundation (Project No. 16-11-00053).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bychkov, I., Davydov, A., Kenzin, M., Maksimkin, N., Nagul, N., Ul’yanov, S.: Hierarchical control system design problems for multiple autonomous underwater vehicles. In: 2019 International Siberian Conference on Control and Communications (SIBCON), pp. 1–6 (2019). https://doi.org/10.1109/SIBCON.2019.8729592

  2. Bychkov, I., Davydov, A., Nagul, N., Ul’yanov, S.: Hybrid control approach to multi-AUV system in a surveillance mission. Inf. Technol. Ind. 6(1), 20–26 (2018)

    Google Scholar 

  3. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle routing problem: survey. ACM Comput. Surv. 47(2) (2014). https://doi.org/10.1145/2666003

  4. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-68612-7

    Book  MATH  Google Scholar 

  5. Chu, X., Peng, Z., Wen, G., Rahmani, A.: Distributed formation tracking of multi-robot systems with nonholonomic constraint via event-triggered approach. Neurocomputing 275, 121–131 (2018). https://doi.org/10.1016/j.neucom.2017.05.007

    Article  Google Scholar 

  6. Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C., Matta, A.: Or problems related to home health care: a review of relevant routing and scheduling problems. Oper. Res. Health Care 13–14, 1–22 (2017). https://doi.org/10.1016/j.orhc.2017.06.001

    Article  Google Scholar 

  7. Dai, X., Jiang, L., Zhao, Y.: Cooperative exploration based on supervisory control of multi-robot systems. Appl. Intell. 45(1), 18–29 (2016). https://doi.org/10.1007/s10489-015-0741-3

    Article  Google Scholar 

  8. Davies, T., Jnifene, A., Davies, T.: Path planning and trajectory control of collaborative mobile robots using hybrid control architecture. J. Syst. Cybern. Inform. 6 (2013)

    Google Scholar 

  9. Dubins, E.L.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. (1957)

    Google Scholar 

  10. Dunbabin, M., Marques, L.: Robots for environmental monitoring: significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012). https://doi.org/10.1109/MRA.2011.2181683

    Article  Google Scholar 

  11. Hartl, R., Hasle, G., Janssens, G.: Special issue on rich vehicle routing problems. CEJOR 14, 103–104 (2006). https://doi.org/10.1007/s10100-006-0162-9

    Article  MATH  Google Scholar 

  12. Hernández, J.D., Vidal, E., Moll, M., Palomeras, N., Carreras, M., Kavraki, L.E.: Online motion planning for unexplored underwater environments using autonomous underwater vehicles. J. Field Robot. 36(2), 370–396 (2019). https://doi.org/10.1002/rob.21827

    Article  Google Scholar 

  13. Ju, C., Son, H.I.: Modeling and control of heterogeneous agricultural field robots based on Ramadge–Wonham theory. IEEE Robot. Autom. Lett. 5(1), 48–55 (2020)

    Article  Google Scholar 

  14. Kenzin, M., Bychkov, I., Maksimkin, N.: Task allocation and path planning for network of autonomous underwater vehicle. Int. J. Comput. Netw. Commun. 10(2), 33–42 (2018). https://doi.org/10.5121/ijcnc.2018.10204

    Article  Google Scholar 

  15. Kozlov, R.I., Kozlova, O.R.: Investigation of stability of nonlinear continuous-discrete models of economic dynamics using vector Iyapunov function. I. J. Comput. Syst. Sci. Int. 48(2), 262–271 (2009). https://doi.org/10.1134/S1064230709020105

  16. Koç, Ç., Bektaş, T., Jabali, O., Laporte, G.: Thirty years of heterogeneous vehicle routing. Eur. J. Oper. Res. 249(1), 1–21 (2016). https://doi.org/10.1016/j.ejor.2015.07.020

  17. Lapierre, L., Soetanto, D.: Nonlinear path-following control of an AUV. Ocean Eng. 34(11), 1734–1744 (2007). https://doi.org/10.1016/j.oceaneng.2006.10.019

    Article  Google Scholar 

  18. Laporte, G., Røpke, S., Vidal, T.: Heuristics for the Vehicle Routing Problem, 2 edn., pp. 87–116. Society for Industrial and Applied Mathematics (2014)

    Google Scholar 

  19. Larionov, A., Davydov, A., Cherkashin, E.: The calculus of positively constructed formulas, its features, strategies and implementation. In: International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija 2013, pp. 1023–1028 (2013)

    Google Scholar 

  20. Li, D., Wang, P., Du, L.: Path planning technologies for autonomous underwater vehicles-a review. IEEE Access 7, 9745–9768 (2019)

    Article  Google Scholar 

  21. Liu, X., Ge, S.S., Goh, C., Li, Y.: Event-triggered coordination for formation tracking control in constrained space with limited communication. IEEE Trans. Cybern. 49(3), 1000–1011 (2019)

    Article  Google Scholar 

  22. Manyam, S.G., Casbeer, D.W., Moll, A.V., Fuchs, Z.: Shortest Dubins path to a circle. arXiv, Optimization and Control (2018)

    Google Scholar 

  23. Medeiros, A.A.D.: A survey of control architectures for autonomous mobile robots. J. Braz. Comput. Soc. 4 (1998)

    Google Scholar 

  24. Metoui, F., Boussaid, B., Abdelkrim, M.N.: Path planning for a multi-robot system with decentralized control architecture. In: Ghommam, J., Derbel, N., Zhu, Q. (eds.) New Trends in Robot Control. SSDC, vol. 270, pp. 229–259. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1819-5_12

    Chapter  MATH  Google Scholar 

  25. Nair, R.R., Behera, L., Kumar, S.: Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances. IEEE Trans. Control Syst. Technol. 27(1), 39–47 (2019)

    Article  Google Scholar 

  26. Panda, M., Das, B., Subudhi, B., Pati, B.B.: A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int. J. Autom. Comput. 17(3), 321–352 (2020). https://doi.org/10.1007/s11633-019-1204-9

    Article  Google Scholar 

  27. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

    Article  MathSciNet  Google Scholar 

  28. Ren, W., Sorensen, N.: Distributed coordination architecture for multi-robot formation control. Robot. Autonom. Syst. 56(4), 324–333 (2008). https://doi.org/10.1016/j.robot.2007.08.005

    Article  MATH  Google Scholar 

  29. Seatzu, C., Silva, M., van Schuppen, J.H. (eds.): Control of Discrete-Event Systems. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4276-8

  30. Shepard, J.T., Kitts, C.A.: A multirobot control architecture for collaborative missions comprised of tightly coupled, interconnected tasks. IEEE Syst. J. 12(2), 1435–1446 (2018). https://doi.org/10.1109/JSYST.2016.2590430

    Article  Google Scholar 

  31. Ulyanov, S., Maksimkin, N.: Formation path-following control of multi-AUV systems with adaptation of reference speed. Math. Eng. Sci. Aerosp. (MESA) 10(3), 487–500 (2019)

    Google Scholar 

  32. Vassilyev, S.N.: Machine synthesis of mathematical theorems. J. Logic Program. 9(2–3), 235–266 (1990). https://doi.org/10.1016/0743-1066(90)90042-4

    Article  MathSciNet  Google Scholar 

  33. Vassilyev, S., Ulyanov, S., Maksimkin, N.: A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems. In: AIP Conference Proceedings, pp. 020170(1)–020170(10) (2017). https://doi.org/10.1063/1.4972762

  34. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-319-77452-7

    Book  MATH  Google Scholar 

  35. Yan, Z., Li, J., Zhang, G., Wu, Y.: A real-time reaction obstacle avoidance algorithm for autonomous underwater vehicles in unknown environments. Sensors 18(2) (2018). https://doi.org/10.3390/s18020438

  36. Yao, X., Wang, X., Wang, F., Zhang, L.: Path following based on waypoints and real-time obstacle avoidance control of an autonomous underwater vehicle. Sensors 20(3) (2020). https://doi.org/10.3390/s20030795

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Ul’yanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bychkov, I., Ul’yanov, S., Nagul, N., Davydov, A., Kenzin, M., Maksimkin, N. (2020). Event-Based Cooperative Control Framework for Robot Teams. In: Qian, J., Liu, H., Cao, J., Zhou, D. (eds) Robotics and Rehabilitation Intelligence. ICRRI 2020. Communications in Computer and Information Science, vol 1336. Springer, Singapore. https://doi.org/10.1007/978-981-33-4932-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4932-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4931-5

  • Online ISBN: 978-981-33-4932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics