Skip to main content

Building a Non-ionic, Non-electronic, Non-algorithmic Artificial Brain: Cortex and Connectome Interaction in a Humanoid Bot Subject (HBS)

  • Conference paper
  • First Online:
Proceedings of International Conference on Trends in Computational and Cognitive Engineering

Abstract

In the 1920s, Brodmann found that the neurons arrange in around 47 distinct patterns in the brain’s topmost thin cortex layer. Each region controls a distinct brain function. Together, the cortex is made of 120,000–200,000 cortical columns, executing all cognitive responses. By filling capillary glass tubes with helical carbon nanotube, we built a corticomorphic device as a replacement of the neuromorphic device and using 10,000 such corticomorphic devices built a cortex replica. Using dielectric and cavity resonators, we built a complex nerve fiber network of the entire brain–body system. It includes connectome, spinal cord, and similar ten major organs. The nerve fiber network takes input from wide ranges of sensors, and the neural paths interact before changing the self-assembly of helical carbon nanotubes, which is read using EEG or laser refraction. The integrated brain–body system is our humanoid bot subject, HBS. One could refill entire cortex region with new synthetic organic materials to test spontaneous, software-free 24 × 7 brain response in EEG and optical vortices. Our extensive theoretical simulations of all brain components were verified with hardware replicas in the optoelectronic HBS. HBS is a universal tool to test a brain hypothesis using AI chips, organic–inorganic materials, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lancaster, M.A., et al.: Cerebral organoids model human brain development and microcephaly. Nature 501(7467), 373–379 (2013)

    Article  Google Scholar 

  2. Lancaster, M.A., et al.: Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35(7), 659–666 (2017)

    Article  Google Scholar 

  3. Tan, Z., Parisi, C., Silvio, L.D., Dini, D., Forte, A.E.: Cryogenic 3D printing of super soft hydrogels. Sci. Rep. 7, 16293 (2017)

    Article  Google Scholar 

  4. Tallinen, T., Chung, J.Y., Rousseau, F., Girard, N., Lefèvre, J., Mahadevan, L.: On the growth and form of cortical convolutions. Nat. Phys. 12, 588–593 (2016)

    Article  Google Scholar 

  5. Bogdan, P.A., Rowley, A.G.D., Rhodes, O., Furber, S.B.: Structural plasticity on the SpiNNaker many-core neuromorphic system. Front. Neurosci. 12, 434 (2018)

    Article  Google Scholar 

  6. Bressler, S.L., Kelso, J.A.S.: Cortical coordination dynamics and cognition. Trends Cogn. Neurosci. 5, 26–36 (2001)

    Google Scholar 

  7. Chklovskii, D.B., Mel, B.W., Svoboda, K.: Cortical rewiring and information storage. Nature 431, 782–788 (2007)

    Article  Google Scholar 

  8. Chklovskii, D.B., Schikorski, T., Stevens, C.F.: Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002)

    Article  Google Scholar 

  9. Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J.: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003)

    Article  Google Scholar 

  10. Dupont, E., Hanganu, I.L., Kilb, W., Hirsch, S., Luhmann, H.J.: Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439, 79–83 (2006)

    Article  Google Scholar 

  11. Eckhorn, R.: Cortical processing by fast synchronization: high frequency rhythmic and non-rhythmic signals in the visual cortex point to general principles of spatiotemporal coding: time and the brain. In: Miller, R. (ed.), pp. 169–201. Harwood Academic Publishers (2000)

    Google Scholar 

  12. Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–683 (1997)

    Article  Google Scholar 

  13. We Almost Gave Up On Building Artificial Brains. https://www.discovermagazine.com/technology/we-almost-gave-up-on-building-artificial-brains

  14. Human Brain Project. https://www.humanbrainproject.eu/en/

  15. SpiNNaker Project. http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/

  16. DeepMind’s Losses and the Future of Artificial Intelligence. https://www.wired.com/story/deepminds-losses-future-artificial-intelligence/

  17. Reddy, S., et al.: A brain-like computer made of time crystal: could a metric of prime alone replace a user and alleviate programming forever? In: Soft Computing Application. Springer, Singapore (2018)

    Google Scholar 

  18. Agrawal, L., et al.: Replacing Turing tape with a fractal tape: a new information theory, associated mechanics and decision making without computing. In: Consciousness: Integrating Indian and Western perspective, pp. 87–159 (2016)

    Google Scholar 

  19. Singh, P., Ray, K., Fujita, D., Bandyopadhyay, A.: Complete dielectric resonator model of human brain from MRI data: a journey from connectome neural branching to single protein. In: Lecture Notes in Electrical Engineering, vol. 478, pp. 717–733 (2018)

    Google Scholar 

  20. Singh, P., et al.: A self-operating time crystal model of the human brain: can we replace entire brain hardware with a 3D fractal architecture of clocks alone? Information 11(5), 238 (2020)

    Article  Google Scholar 

  21. Yamins, D.L.K., DiCarlo, J.J.: Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016)

    Article  Google Scholar 

  22. Wheeler, J.A.: On the nature of quantum geometrodynamics. Ann. Phys. 2, 604–614 (1957)

    Article  MATH  Google Scholar 

  23. Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yucel, M., et al.: Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50, 970–983 (2010)

    Article  Google Scholar 

  24. Hart, Y., Dillon, M.R., Marantan, A., Cardenas, A.L., Spelke, E., Mahadevan, L.: The statistical shape of geometric reasoning. Sci. Rep. 8(12906), 1–12 (2018)

    Google Scholar 

  25. Terekhovich, V.E.: Probabilistic and geometric languages in the context of the principle of least action. Philos. Sci. Novosibirsk 52(2), 108–120 (2012)

    Google Scholar 

  26. Sweet, H.: Universal languages. In: Encyclopædia Britannica, 11th edn (1911). https://en.wikipedia.org/wiki/Universal_language

  27. Singh, P., et al.: A space-time-topology-prime, stTS metric for a self-operating mathematical universe uses dodecanion geometric algebra of 1-20D complex vectors. In: LNSS, Lecture notes on networks and signals. Springer Nature, Berlin, in press (2019)

    Google Scholar 

  28. Singh, P., et al.: Quaternion octonion to dodecanion manifold: stereographic projections from infinity lead to a self-operating mathematical universe. In: AISC, Advanced Intelligence Systems and Computing. Springer Nature, Berlin, in press (2019)

    Google Scholar 

  29. Bandyopadhyay, A.: Chapter 2 FIT, and GML; Chapter 3 PPM; Chapter 7. A complete, integrated time crystal model of a human brain. In: Nanobrain. The Making of an Artificial Brain from a Time Crystal, 372 p. Taylor & Francis Inc. Imprint CRC Press Inc., Bosa Roca (2020)

    Google Scholar 

  30. Amalric, M., Wang, L., Pica. P., Figueria, S., Sigman, M., Dehaene, S.: The language of geometry: fast comprehension of geometrical primitives and rules in human adults and preschoolers. PLoS Comput. Biol. 13(1), e1005273 (2017)

    Google Scholar 

  31. Dehaene, S., Izard, V., Pica, P., Spelke, E.: Core knowledge of geometry in an Amazonian Indigene Group. Science 311(5759), 381–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guevara, M.R., Jongsma, H.J.: Phase resetting in a model of sinoatrial nodal membrane: ionic and topological aspects. Am. J. Physiol. 258, 734–747 (1990)

    Google Scholar 

  33. Agrawal, L., et al.: Fractal information theory (FIT) derived geometric musical language (GML) for brain inspired hypercomputing. In: Advances in Intelligent Systems and Soft Computing (AISC), vol. 2, pp. 37–61. Springer, Berlin (2016)

    Google Scholar 

  34. Sotiropoulos, S.N., et al.: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013)

    Article  Google Scholar 

  35. Buzsáki, G.: The rhythms of the brain. Oxford University Press, London (2006). https://doi.org/10.1093/acprof:oso/9780195301069.001

  36. Ramkumar, P., Parkkonen, L., Hari, R., Hyvärinen, A.: Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum. Brain Mapp. 33(7), 1648–1662 (2012)

    Article  Google Scholar 

  37. Ghosh, S., Sahu, S., Fujita, D., Bandyopadhyay, A.: Design and operation of a brain like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic systems. Information 5, 28–99 (2014)

    Article  Google Scholar 

  38. Carter, R.: The human brain book: an illustrated guide to its structure, function, and disorders. DK, London (2014)

    Google Scholar 

  39. Liu, Z., Fang, N., Yen, T.J., Zang, X.: Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. 83, 5184–5187 (2003)

    Article  Google Scholar 

  40. Wiltshire, M.C.K., et al.: Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires. Opt. Express 11(7), 709–715 (2003)

    Google Scholar 

  41. Milosevic, M.: On the nature of the evanescent wave. Appl. Spectrosc. 26(2), 126–131 (2013)

    Article  Google Scholar 

  42. Plebe, A., Domenella, R.G.: Neural networks; Object recognition by artificial cortical maps. Neural Networks 20(7), 763–780 (2007)

    Article  MATH  Google Scholar 

  43. Striegel, D.A., Hurdal, M.K.: Chemically based mathematical model for development of cerebral cortical folding patterns. PLoS Comput. Biol. 5(9), e1000524 (2019)

    Article  MathSciNet  Google Scholar 

  44. Reimann, M.W., King, J.G., Muller, E.B., Ramaswamy, S., Markram, H.: An algorithm to predict the connectome of neural microcircuits. Front. Comput. Neurosci. 9, 1–8 (2015)

    Article  Google Scholar 

  45. Braitenberg, V., Braitenberg, C.: Geometry of orientation columns in the visual cortex. Biol. Cybern. 33, 179–186 (1979)

    Article  MATH  Google Scholar 

  46. Klyachko, V.A., Stevens, C.F.: Connectivity optimization and the positioning of cortical areas. Proc. Natl. Acad. Sci. 100, 7937–7941 (2003)

    Article  Google Scholar 

  47. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  48. Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–485 (1997)

    Article  Google Scholar 

  49. Harris, K.D., Barthó, P., Zugaro, M.B., Monconduit, L., Marguet, S., Buzsaki, G.: Neocortical population patterns during EEG activation: waking, REM, and anesthetised states. Society for Neuroscience Meeting, Washington DC, abstract.719.5 (2003)

    Google Scholar 

  50. Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius Barth, Leipzig (1909)

    Google Scholar 

  51. Garey, L.J.: Brodmann’s: localisation in the cerebral cortex. Springer, New York (2006)

    Google Scholar 

  52. CST Microwave Studio. https://perso.telecom-paristech.fr/begaud/intra/MWS_Tutorials.pdf

  53. Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., et al.: Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015)

    Article  Google Scholar 

  54. Horton, J.C., Adams, D.L.: The cortical column: a structure without a function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1456), 837–862 (2005)

    Article  Google Scholar 

  55. Haueis, P.: The life of the cortical column: opening the domain of functional architecture of the cortex (1955–1981). Hist. Philos. Life Sci. 38(2) (2016)

    Google Scholar 

  56. Ghosh, S., et al.: Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell. J. Integr. Neurosci. 15(4), 403–433 (2016)

    Article  Google Scholar 

  57. Venkataraman, A., Amadi, E.V., Chen, Y., Papadopoulos, C.: Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 14(1), 220 (2019)

    Article  Google Scholar 

  58. Singh, P., et al.: Fractal and periodical biological antennas: hidden topologies in DNA, wasps and retina in the eye. In: Soft Computing Applications, pp. 113–130. Springer, Singapore (2018)

    Google Scholar 

  59. Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993)

    Google Scholar 

  60. Shi, J., Thompson, P.M., Wang, Y.: Human brain mapping with conformal geometry and multivariate tensor-based morphometry. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds) Multimodal Brain Image Analysis, MBIA. Lecture Notes in Computer Science. Springer, Berlin (2011)

    Google Scholar 

  61. Muller, A.A., Soto, P., Dascalu, D., Neculoiu, D., Boria, V.E.: A 3-D smith chart based on the Riemann sphere for active and passive microwave circuits. IEEE Microwave Wirel. Compon. Lett. 21(6), 286–288 (2011)

    Article  Google Scholar 

  62. Muller, A.A., Dascalu, D.C., Pacheco, P.S., Esbert, V.E.B.: The 3D Smith chart and its practical applications. Microw. J. 55(6), 64–74 (2012)

    Google Scholar 

  63. Gawne, T.J., Richmond, B.J.: How independent are the messages carried by adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771 (1993)

    Article  Google Scholar 

  64. Zeki, S., Shipp, S.: The functional logic of cortical connections. Nature 335, 311–317 (1988)

    Article  Google Scholar 

  65. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006)

    Article  Google Scholar 

  66. Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)

    Article  Google Scholar 

  67. Fellous, J.M., Houweling, A.R., Modi, R.H., Rao, R.P., Tiesinga, P.H., Sejnowski, F.J.: Frequency dependence of spiking timing reliability in cortical pyramidal cells and interneurons. J. Neurophysiol. 85, 1782–1787 (2001)

    Article  Google Scholar 

  68. Llinás, R.R., Ribary, U., Joliot, M., Wang, X.J.: Content and context in temporal thalamocortical binding. In: Buzsáki, G., Llinás. R., Singer, W., Berthoz, A., Christen, Y. (eds.) Temporal Coding in the Brain, pp. 251–272. Springer, Berlin (1994)

    Google Scholar 

  69. Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yester, R.: Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004)

    Article  Google Scholar 

  70. Lopes da Silva, F.H., Storm van Leeuwen, W.: The cortical alpha rhythm of the dog: the depth and profile of phase: architectonics of the cerebral cortex. In: Brazier, M.A.B., Petsche, H. (eds.), pp. 150–187. New York (1978)

    Google Scholar 

  71. Van Essen, D.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997)

    Article  Google Scholar 

  72. Ringo, J.L., Doty, R.W., Demeter, S., Simard, P.Y.: Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4, 331–343 (1994)

    Article  Google Scholar 

  73. Matthews, P.C., Strogatz, S.H.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 64, 1701–1704 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  74. Wang, X.J.: Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience 59, 21–31 (1994)

    Article  Google Scholar 

  75. Graybiel, A.M.: The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15, 638–644 (2005)

    Article  Google Scholar 

  76. Paré, D., Shink, E., Gaudreau, H., Destexhe, A., Lang, E.J.: Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79, 1450–1460 (1998)

    Article  Google Scholar 

  77. Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994)

    Article  Google Scholar 

  78. Colom, R., et al.: Human intelligence and brain network. Dialogues Clin. Neurosci. 12(4), 489–501 (2010)

    Article  Google Scholar 

  79. Nie, Y., Fellous, J.M., Tatsuno, M.: Information-geometric measures estimate neural interactions during oscillatory brain states. J. Front. Neural Circ. 24, 8–11 (2014)

    Google Scholar 

  80. Saxena, K., et al.: Fractal, scale free electromagnetic resonance of a single brain extracted microtubule nanowire, a single tubulin protein and a single neuron. Fractal Fractional 4(2), 11 (2020)

    Article  Google Scholar 

  81. Friston, K.: The free energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Article  Google Scholar 

  82. Winfree, A.: Biological Rhythm Research: The Geometry of Biological Time. Springer, New York (1977, 2001)

    Google Scholar 

  83. Miller, K.D., Pinto, D.J., Simons, D.J.: Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11, 488–497 (2001)

    Article  Google Scholar 

  84. Zeki, S.M.: Uniformity and diversity of structure and function in rhesus monkey prestriate cortex. J. Physiol. 277, 272–290 (1978)

    Article  Google Scholar 

  85. Abeles, M.: Local cortical circuits: studies in brain function. Springer, Berlin (1982)

    Book  Google Scholar 

  86. Sadeh, S., Rotter, S.: Statistics and geometry of orientation selectivity in primary visual cortex. Biol. Cybern. 108(5), 631–653 (2014)

    Article  MATH  Google Scholar 

  87. Niu, H., Wang, J., Zhao, T., Shu, N., He, Y.: Correction: revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy. PLoS ONE 7(9), e45771 (2013)

    Article  Google Scholar 

  88. Scannell, J.W., Blakemore, C., Young, M.P.: Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15(2), 1463–1483 (1995)

    Article  Google Scholar 

  89. Krupa, D.J., Wiest, M.C., Shuler, M.G., Laubach, M., Nicolelis, M.A.: Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304, 1989–1992 (2004)

    Article  Google Scholar 

  90. Reich, D.S., Mechler, F., Victor, J.D.: Independent and redundant information in nearby cortical neurons. Science 294, 2566–2568 (2001)

    Article  Google Scholar 

  91. Katz, L.C., Shatz, C.J.: Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    Article  Google Scholar 

  92. Schütz, A., Braitenberg, V.: The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. In: Schütz, A., Miller, R. (eds.) Cortical Areas: Unity and Diversity. Taylor and Francis, Milton Park (2002)

    Google Scholar 

  93. Shu, Y., Hasenstaub, A., McCormick, D.: Turning on, off recurrent balanced cortical activity. Nature 423, 288–293 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Asian office of Aerospace R&D (AOARD) a part of United States Air Force (USAF) for the Grant no. FA2386-16-1-0003 (2016–2019) on the electromagnetic resonance-based communication and intelligence of biomaterials.

Competing Interests

The authors declare that there is no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pushpendra Singh or Anirban Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P., Sahoo, P., Ray, K., Ghosh, S., Bandyopadhyay, A. (2021). Building a Non-ionic, Non-electronic, Non-algorithmic Artificial Brain: Cortex and Connectome Interaction in a Humanoid Bot Subject (HBS). In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Advances in Intelligent Systems and Computing, vol 1309. Springer, Singapore. https://doi.org/10.1007/978-981-33-4673-4_21

Download citation

Publish with us

Policies and ethics