Skip to main content

Role of Methanotrophs in Mitigating Global Warming

  • Chapter
  • First Online:
Microbiomes and the Global Climate Change

Abstract

There is growing concern about global warming worldwide. Greenhouse gases, which absorb the heat energy reflected by the earth’s surface, are the main causes of global warming. Carbon dioxide, methane, nitrous oxide, and ozone are the main greenhouse gases. Methane is about 23 times more effective as a greenhouse gas than carbon dioxide. Anthropogenic sources release methane directly or indirectly into the atmosphere account for up to one-third of the global warming currently taking place. Methanotrophic bacteria or methanotrophs may serve as a biofilter and use methane as a source of energy before it is released into the atmosphere. They have been the only recognized major biological sink for atmospheric methane and play a key role in reducing the load of methane up to 15% to the total global methane destruction. Because of its physiologically adaptable nature, methanotrophs exist in diverse habitats and present in a wide range of pH, temperature, oxygen, salinity, and radiation. In this chapter, role of methanotrophs as an effective tool in mitigating greenhouse gas emissions is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albanna M, Fernandes L, Warith M (2007) Methane oxidation in landfill cover soil; the combined effects of moisture content, nutrient addition, and cover thickness. J Environ Eng Sci 6:191–200

    Article  CAS  Google Scholar 

  • Allen LH, Albrecht SL, Colon-Guasp W, Covell SA, Baker JT, Pan D et al (2003) Methane emissions of rice increased by elevated carbon dioxide and temperature. J Environ Qual 32:1978–1991

    Article  CAS  PubMed  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London

    Google Scholar 

  • Apel W (1991) Use of methanotrophic bacteria in gas phase bioreactors to abate methane in coal mine atmospheres. Fuel 70:1001–1003

    Article  CAS  Google Scholar 

  • Austin E, Castro H, Sides K, Schadt C, Classen A (2009) Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweet gum plantation. Soil Biol Biochem 41:514–520

    Article  CAS  Google Scholar 

  • Baesman SM, Miller LG, Wei JH, Cho Y, Matys ED, Summons RE, Welander PV, Oremland RS (2015) Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment. Microorganisms 3:290–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender M, Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res Atmos 99(D8):16531–16540

    Article  CAS  Google Scholar 

  • Bodelier P, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodrossy L, Murrell JC, Dalton H et al (1995) Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 61:3549–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes AJ et al (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503

    Article  CAS  PubMed  Google Scholar 

  • Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidizing γ-Proteobacterium. FEMS Microbiol Ecol 170:335–341

    CAS  Google Scholar 

  • Borjesson G, Sundh I, Tunlid A et al (1998) Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol Ecol 26:207–217

    Article  CAS  Google Scholar 

  • Borjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • BP (2009) Statistical review of world energy. www.bp.com

  • Breas O, Guillou C, Reniero F, Wada E (2001) The global methane cycle: isotopes and mixing ratios, sources and sinks. Isot Environ Health Stud 37:257–379

    Article  CAS  Google Scholar 

  • Bridgham SD, Cadillo Quiroz H, Keller J, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Buffett B (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199

    Article  CAS  Google Scholar 

  • Cai Z, Yan X (1999) Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition. Soil Biol Biochem 31:715–725

    Article  CAS  Google Scholar 

  • Cloirec PL, Humer P, Ramirez-Lopez EM (2001) Biotreatment of odours: control and performances of a biofilter and a bioscrubber. Water Sci Technol 44:219–226

    Article  PubMed  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc Lond Ser B Biol Sci 360:1207–1222

    Article  CAS  Google Scholar 

  • De la Chesnaye FC, Delhotal C, DeAngelo B, Ottinger Schaefer D, Godwin D (2006) Past, present, and future of non-CO2 gas mitigation analysis in human-induced climate change: an interdisciplinary assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN et al (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Horz HP, Dunfield PF, Liesack W (2001) A novel pmoA lineage represented by the acidophilic methanotrophic bacterium Methylocapsa acidiphila (correction of acidophila) B2. Arch Microbiol 177:117–121

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE et al (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dever SA, Swarbrick GE, Stuetz RM (2007) Passive drainage and biofiltration of landfill gas: Australian field trial. Waste Manag 27(2):277–286

    Article  CAS  PubMed  Google Scholar 

  • Dobbie K, Smith K (1996) Comparison of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biol Biochem 28:1357–1365

    Article  CAS  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  PubMed  Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane oxidising bacteria over the growth period of rice. Appl Environ Microbiol 67:2395–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuse H, Ohta M, Takimura O et al (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Gebert J, Gröngröft A (2006) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag 26:399–407

    Article  CAS  PubMed  Google Scholar 

  • Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag 23:609–619

    Article  CAS  PubMed  Google Scholar 

  • Girard M, Ramirez AA, Buelna G, Heitz M (2011) Biofiltration of methane at low concentrations representative of the piggery industry—influence of the methane and nitrogen concentrations. Chem Eng J 168:151–158

    Article  CAS  Google Scholar 

  • Han B, Chen Y, Abell G (2009) Diversity and activity of methanotrophs in an alkaline Chinese coal mine soil. FEMS Microbiol Ecol 70:40–51

    Article  PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haubrichs R, Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag 26:408–416

    Article  CAS  PubMed  Google Scholar 

  • Henckel T, Jackel U, Schnell S, Conrad R (2000) Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Horz HP, Rich V, Avrahami S, Bohannan BJ (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26:33–46

    Article  CAS  PubMed  Google Scholar 

  • Hughes K, Daneel R, Senior E (2002) Physiological characterization of a methanol-oxidizing microbial association isolated from landfill final covering soil. S Afr J Sci 98:434–436

    CAS  Google Scholar 

  • Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17:443–452

    Article  CAS  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3(2):137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inubushi K, Cheng W, Aonuma S, Hoque MM, Kobayashi K, Miura S et al (2003) Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob Chang Biol 9:1458–1464

    Article  Google Scholar 

  • IPCC (1996) Climate change 1995: the science of climate change. In: Houghton JT, Filho LGM, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 572 pp

    Google Scholar 

  • IPCC (2007a) Climate change 2007- the physical science basis: working group I contribution to the fourth assessment report of the intergovermental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Fourth assessment report: climate change 2007. http://www.ipcc.ch

  • Islam T, Jensen S, Reigstad LJ et al (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhala YK, Rajababu VV, Shelat Harsha N, Patel HK, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30(6):1845–1860

    Article  CAS  PubMed  Google Scholar 

  • Jhala YK, Rajababu VV, Panpatte Deepak G, Shelat Harsha N (2015) Rapid methods for isolation and screening of methane degrading bacteria. J Bioremed Biodegr 7:322

    Google Scholar 

  • Kaluzhnaya M, Khmelenina V, Eshinimaev B et al (2001) Taxonomic characterization of new alkaliphilic and alkali tolerant methanotrophs from soda lakes of the southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov. Syst Appl Microbiol 24:166–176

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Lysenko AM, Suzina NE, Trotsenko YA (1999) New methanotrophic isolates from soda lakes of the southern Transbaikal region. Mikrobiologiia (Russian) 68:689–697

    Google Scholar 

  • Kappler U, Nouwens AS (2013) Metabolic adaptation and trophic strategies of soil bacteria C1-metabolism and sulfur chemolithotrophy in Starkeya novella. Front Microbiol 4:1–12

    Article  Google Scholar 

  • Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane by the sea. Nat Geosci 1:473–478

    Article  CAS  Google Scholar 

  • Kenney GE, Sadek M, Rosenzweig AC (2016) Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8(9):931–940

    Article  CAS  PubMed  Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315

    Article  CAS  PubMed  Google Scholar 

  • Kettunen RH, Einola JKM, Rintala JA (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Pollut 177:313–334

    Article  CAS  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Starostina NG et al (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261

    Article  CAS  Google Scholar 

  • Kolb SP, Stacheter A (2013) Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 4:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51

    Article  CAS  Google Scholar 

  • Kvenvolden K (1993) Methane hydrates and global climate. Glob Biogeochem Cycles 3:221–229

    Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. Geol Soc Lond Spec Publ 137:9–30

    Article  CAS  Google Scholar 

  • Leak DJ, Dalton H (1986) Growth yields of methanotrophs. Appl Microbiol Biotechnol 23:470–476

    Article  CAS  Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50:128–150

    Article  Google Scholar 

  • Lidstrom ME (1988) Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek 54:189–199

    Article  CAS  PubMed  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    Article  CAS  PubMed  Google Scholar 

  • Limbri H, Gunawan C, Thomas T, Smith A, Scott J et al (2014) Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9(4):e94641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu GC, Tokida T, Matsunami T, Nakamura H, Okada M, Sameshima R et al (2012) Microbial community composition controls the effects of climate change on methane emission from rice paddies. Environ Microbiol Rep 4:648–654

    CAS  PubMed  Google Scholar 

  • Malashenko YR, Romanovskaya VA, Bogachenko VN, Shved AD (1975) Thermophilic and thermotolerant methane assimilating bacteria. Mikrobiologiya 44:855–862

    Google Scholar 

  • Mills CT, Amano Y, Slater GF, Dias RF, Iwatsuki T, Mandernack KW (2010) Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from 14C values of in situ phospholipid fatty acids and carbon sources. Geochim Cosmochim Acta 74:3785–3805

    Article  CAS  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC (2010) Genomics of Methylococcus capsulatus (Bath). In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 36. Springer, Heidelberg, pp 1328–1333

    Google Scholar 

  • Murrell JC, Jetten MSM (2009) The microbial methane cycle. Environ Microbiol Rep 1:279–284

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409

    Article  CAS  PubMed  Google Scholar 

  • Nikiema J, Bibeau L, Lavoie J et al (2005) Biofiltration of methane: an experimental study. Chem Eng J 113:111–117

    Article  CAS  Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284

    Article  CAS  Google Scholar 

  • Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343:493–495

    Article  CAS  PubMed  Google Scholar 

  • Okubo T, Tokida T, Ikeda S, Bao Z, Tago K, Hayatsu M et al (2014) Effects of elevated carbon dioxide, elevated temperature, and rice growth stage on the community structure of rice root–associated bacteria. Microbes Environ 29:184–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Omelchenko MV, Vasilieva LV, Zavarzin GA (1993) Psychrophilic methanotroph from tundra soil. Curr Microbiol 27:255–259

    Article  CAS  Google Scholar 

  • Omelchenko MB, Vasilieva LV, Zavarzin GA et al (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiya 65:339–343

    Google Scholar 

  • Oremland RS, Culbertson CW (1992) Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356:421–423

    Article  CAS  Google Scholar 

  • Oshkin IY, Beck DAC, Lamb AE, Tchesnokova V, Benuska G, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2014) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9(5):1119–1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR et al (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  PubMed  Google Scholar 

  • Portnoy A, Vadakkepuliyambatta S, Mienert J, Hubbard A (2016) Ice-sheet-driven methane storage and release in the Arctic. Nat Commun 7:10314

    Article  CAS  Google Scholar 

  • Pritchard S (2011) Soil organisms and global climate change. Plant Pathol 60:82–99

    Article  Google Scholar 

  • Rigby M, Prinn RG, Fraser PJ et al (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35:1–6

    Article  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A et al (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Proceedings of the contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change: climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Rosenzweig AC, Frederick CA, Lippard SJ (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543

    Article  CAS  PubMed  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J et al (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27:409–455

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323:1–12

    Article  CAS  PubMed  Google Scholar 

  • Shakhova N, Seemiletov I, Salyuk A, Kosmach D, Bel’cheva N (2007) Methane release on the Arctic East Siberian shelf. Geophys Res Abstr 9:01071

    Google Scholar 

  • Shakhova N, Seemiletov I, Salyuk A, Kosmach D (2008) Anomalies of methane in the atmosphere over the East Siberian shelf: is there any sign of methane leakage from shallow shelf hydrates? Geophys Res Abstr 10:01526

    Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Sly L, Bryant L, Cox J, Anderson J (1993) Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl Microbiol Biotechnol 39:400–404

    Article  CAS  Google Scholar 

  • Song YM, Wang T (2005) Current status and counter-measures for gas control in Chinese coal mines. China Coalbed Methane 2:3–6

    Google Scholar 

  • Sorokin DY, Jones BE, Kuenen JG (2000) An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4:145–155

    Article  CAS  PubMed  Google Scholar 

  • Stępniewska Z, Pytlak A, Kuźniar A (2013) Methanotrophic activity in carboniferous coal bed rocks. Int J Coal Geol 106:1–10

    Article  CAS  Google Scholar 

  • Syamsul Arif M, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soils 21:95–102

    Article  CAS  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S et al (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  • Tokida T, Fumoto T, Cheng W, Matsunami T, Adachi M, Katayanagi N et al (2010) Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7:2639–2653

    Article  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2008) Extremophilic methanotrophs. ONTI PNTs RAN, Pushchino, p 206

    Google Scholar 

  • Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent green house gases under increased atmospheric CO2. Nature 475:214–216

    Article  PubMed  CAS  Google Scholar 

  • Visvanathan C, Pokhrel D, Cheimchaisri W et al (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag Res 17:313–323

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56:3405–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    Article  CAS  PubMed  Google Scholar 

  • Wilshusen J, Hettiaratchi J, Stein V (2004) Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Manag 24:643–653

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Akiyama H, Yagi K, Akimoto H (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Glob Biogeochem Cycles 23:1–15

    Article  CAS  Google Scholar 

Download references

Acknowledgement

F. M. is thankful to U.G.C., New Delhi for financial assistance in the form of Postdoctoral Research Fellowship for Women.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masood, F., Ahmad, S., Malik, A. (2021). Role of Methanotrophs in Mitigating Global Warming. In: Lone, S.A., Malik, A. (eds) Microbiomes and the Global Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-33-4508-9_4

Download citation

Publish with us

Policies and ethics