Skip to main content

Carbon Sequestration in Aquatic System Using Microbial Pump

  • Chapter
  • First Online:
Microbiomes and the Global Climate Change

Abstract

The amount of carbon stored in the oceans is far greater than what is present in the atmosphere. Understanding the mechanism of absorption of carbon dioxide by oceans is crucial in deciphering the role of CO2 in the context of climate change on micro- and macroclimatic level. Transformation and sequestration of dissolved organic carbon (DOC) involves the production of refractory dissolved organic carbon (RDOC) from labile dissolved organic carbon (LDOC) and this process is mediated primarily by microorganisms. Microbial carbon pump mechanism excludes the carbon from atmosphere by producing a pool of carbon that is recalcitrant to remineralization and thus cannot be reverted to CO2. The microbial carbon pump (MCP) is a biological phenomenon driven by microbes that involves transformation and sequestration of carbon in the ocean. The major carbon sequestration mechanism is provided by MCP, as this is the only pump that leads to the production of refractory DOC fractions. The MCP thus possesses a profound impact on global carbon cycle and global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson TR, Tang KW (2010) Carbon cycling and POC turnover in the mesopelagic zone of the ocean: insights from a simple model. Deep-Sea Res Pt II 57:1581–1592

    Article  CAS  Google Scholar 

  • Benner R, Herndl GJ (2011) Bacterially derived dissolved organic matter in the microbial carbon pump. In: Jiao N, Azam F, Sanders S (eds) Microbial carbon pump in the ocean. Science/AAAS, Washington, DC, pp 46–48. https://doi.org/10.1126/science.opms.sb0001

    Chapter  Google Scholar 

  • Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255(5051):1561–1564

    Article  CAS  PubMed  Google Scholar 

  • Brussaard CPD et al (2008) Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J 2:575–578

    Article  CAS  PubMed  Google Scholar 

  • Capotondi A et al (2012) Enhanced upper ocean stratification with climate change in the CMIP3 models. J Geophys Res Ocean 117(C4):C04031

    Article  Google Scholar 

  • Carlson CA, Bates NR, Hansell DA, Steinberg DK (2001) Carbon cycle. Elsevier, Amsterdam

    Google Scholar 

  • Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Otero MP, Vergin K, Wheeler BR (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30:19–36

    Article  Google Scholar 

  • Carlson CA et al (2009) Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3:283–295

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  PubMed  Google Scholar 

  • Doney SC (2006) The dangers of ocean acidification. Sci Am 294(3):58–65

    Article  PubMed  Google Scholar 

  • Eichinger M et al (2009) Consumption and release of dissolved organic carbon by marine bacteria in a pulsed-substrate environment: from experiments to modelling. Aquat Microb Ecol 56:41–54

    Article  Google Scholar 

  • Falkowski P et al (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291

    Article  CAS  PubMed  Google Scholar 

  • Gehlen M et al (2006) Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences 3:521–537

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ et al (2005a) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ et al (2005b) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85

    Article  CAS  PubMed  Google Scholar 

  • Gruber DF, Simjouw JP, Seitzinger SP, Taghon GL (2006) Dynamics and characterization of refractory dissolved organic matter produced by a pure bacterial culture in an experimental predator-prey system. Appl Environ Microb 72:4184–4191

    Article  CAS  Google Scholar 

  • Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci 5:421–445

    Article  Google Scholar 

  • Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean: new insights stimulated by a controversy. Oceanography 22:52–61

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Jiao N, Zheng Q (2011) The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol 77:7439–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010a) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    Article  CAS  PubMed  Google Scholar 

  • Jiao N et al (2010b) The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol 77(21):7439–7444

    Article  CAS  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2011) The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nat Rev Microbiol 9:555–555. https://doi.org/10.1038/nrmicro2386-c5

    Article  CAS  Google Scholar 

  • Jiao N, Robinso C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford NJ, Johnson M, Kirchman DL, Koch BP, Legendre L, Li C, Liu J, Luo T, Luo Y-W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R (2014) Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences 11:5285–5306

    Article  Google Scholar 

  • Joint I, Doney SC, Karl DM (2011) Will ocean acidification affect marine microbes? ISME J 5:1–7

    Article  PubMed  Google Scholar 

  • Koch BP, Kattner G, Witt M, Passow U (2014) Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile? Biogeosciences 11:4173–4190. https://doi.org/10.5194/bg-11-4173-2014

    Article  CAS  Google Scholar 

  • Legendre L et al (2015) The microbial carbon pump concept: potential biogeochemical significance in the globally changing ocean. Prog Oceanogr 134:432–450

    Article  Google Scholar 

  • Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc B 364:239–245

    Article  CAS  Google Scholar 

  • McCarthy MD, Hedges JI, Benner R (1998) Major bacterial contribution to marine dissolved organic nitrogen. Science 281:231–234

    Article  CAS  PubMed  Google Scholar 

  • Moran MA et al (2007) Ecological genomics of marine roseobacters. Appl Environ Microbiol 73:4559–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–711

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Fukuda H, Fukuda R, Koike I (2000) Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol Oceanogr 45:426–435

    Article  CAS  Google Scholar 

  • Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147

    Article  CAS  Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920

    Article  CAS  PubMed  Google Scholar 

  • Parekh P et al (2006) Atmospheric carbon dioxide in a less dusty world. Geophys Res Lett 33(3):L03610

    Article  CAS  Google Scholar 

  • Passow U, Carlson CA (2012) The biological pump in a high CO2 world. Mar Ecol Prog Ser 470:249–271

    Article  CAS  Google Scholar 

  • Poretsky RS et al (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poretsky RS, Sun S, Mou X, Moran MA (2010) Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol 12:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmstorf S (2006) Thermohaline ocean circulation. In: Elias SA (ed) Encyclopedia of quaternary sciences. Elsevier, Amsterdam

    Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repeta DJ, Quan TM, Aluwihare LI, Accardi A (2002) Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochim Cosmochim Acta 66:955–962

    Article  CAS  Google Scholar 

  • Riebesell U et al (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55:30–36

    Article  CAS  Google Scholar 

  • Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448

    Article  CAS  PubMed  Google Scholar 

  • Sigman DM, Haug GH (2006) The biological pump in the past. In: Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 491–528

    Google Scholar 

  • Solomon S, Qin D, Manning M et al (2007) Climate change: the physical science. IPCC, Geneva, Switzerland

    Google Scholar 

  • Suttle CA (2007) Marine viruses — major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Wassmann P (1998) Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia 363:29–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S.N., Mir, T.A., Shareef, T., Pattnaik, S., Lone, S.A. (2021). Carbon Sequestration in Aquatic System Using Microbial Pump. In: Lone, S.A., Malik, A. (eds) Microbiomes and the Global Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-33-4508-9_2

Download citation

Publish with us

Policies and ethics