Skip to main content

Evaluation of Nanotoxicity Using Zebrafish: Preclinical Model

  • Chapter
  • First Online:
Nanocarriers: Drug Delivery System

Abstract

Throughout the globe, nanotechnology has emerged as a segment which produces a multitrillion-dollar business opportunity that covers a wide range of industries such as medicine, electronics, and chemistry. Due to the rapid development of application-oriented nanoparticles, from targeted drug delivery to diagnostics, in vivo toxicological examinations for assessing the potential hazardous effects of nanoparticles on natural and human safety are in urgent need. Therefore, it is essential to assess their toxicity and possible hazards to humans and ecosystem. Zebrafish is considered as the “gold standard” among animal models for assessment of several metal and metal oxide nanoparticle toxicity due to its cost-effectiveness, high fecundity, optical transparency, short life cycle, well-characterized developmental stages, etc. The chapter emphasizes on how zebrafish (Danio rerio) can be utilized to assess nanotoxicity at different levels, including genotoxicity, developmental toxicity, immunotoxicity, cardiovascular toxicity, teratogenicity, neurotoxicity, reproductive toxicity, hepatotoxicity, as well as change in behavior and disruption of gill, skin, and endocrine system. The harmful impacts of chosen metal and metal oxide nanoparticles are also reviewed. The advantages, drawbacks, and future aspects of utilization of zebrafish model in nanotoxicity studies are also argued. Overall, zebrafish is projected to fulfill as a high-throughput screening platform for drug delivery assessment and nanotoxicity, which may help in designing safe and more effective nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramenko NB, Demidova TB, Abkhalimov EV et al (2018) Eco toxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    Article  CAS  PubMed  Google Scholar 

  • Adeleye AS, Oranu EA, Tao M et al (2016) Release and detection of nanosized copper from a commercial antifouling paint. Water Res 102:374–382

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Lian Wu Y, Gong Z et al (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Lianwu Y, Gong Z et al (2010) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54

    Article  PubMed  CAS  Google Scholar 

  • Bai W, Tian W, Zhang Z et al (2010) Effects of copper nanoparticles on the development of zebrafish embryos. J Nanosci Nanotechnol 10(12):8670–8676

    Article  CAS  PubMed  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE et al (2009) Toxicity assessments of multi sized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910

    Article  CAS  PubMed  Google Scholar 

  • Bar-Ilan O, Louis KM, Yang SP et al (2012) Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology 6:670–679

    Article  CAS  PubMed  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862

    Article  CAS  PubMed  Google Scholar 

  • Bendale Y, Bendale V, Paul S (2017) Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res 6(2):141–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human bio monitoring studies. Mutat Res 543:251–272

    Article  CAS  PubMed  Google Scholar 

  • Browning LM, Lee KJ, Huang T et al (2019) Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 1(1):138–152

    Article  CAS  Google Scholar 

  • Brun NR, Lenz M, Wehrli B et al (2014) Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions. Sci Total Environ 476–477:657–666

    Article  PubMed  CAS  Google Scholar 

  • Brun NR, Koch BVE, Varela M et al (2018) Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environ Sci Nano 5:904–916

    Article  CAS  Google Scholar 

  • Bury NR, Grosell M, Grover AK et al (1999) ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol Appl Pharmacol 159:1–8

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Diaz E, Valcarcel M (2014) Toxicity of gold nanoparticles. In: Varcarcel M, Lopez-Lorente A (eds) Comprehensive analytical chemistry. Elsevier, Oxford, pp 207–254

    Google Scholar 

  • Castranova D, Lawton A, Lawrence C et al (2011) The effect of stocking densities on reproductive performance in laboratory zebrafish (Danio rerio). Zebrafish 8(3):141–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty C, Agoramoorthy G (2010) Why zebrafish? Riv Biol 103:25

    PubMed  Google Scholar 

  • Chakraborty C, Sarkar B, Hsu C et al (2009) Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol 93:285–286

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G et al (2016) Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 14(1):1–13

    Article  CAS  Google Scholar 

  • Chandirasekar S, Chandrasekaran C, Muthukumarasamyvel T et al (2016) Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos. Colloids Surf B Biointerfaces 143:472–480

    Article  CAS  Google Scholar 

  • Chang J, Ichihara G, Shimada Y et al (2015) Copper oxide nanoparticles reduce vasculogenesis in transgenic zebrafish through down-regulation of vascular endothelial growth factor expression and induction of apoptosis. J Nanosci Nanotechnol 15(3):2140–2147

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Dong X, Xin Y et al (2011a) Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol 101:493–499

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Lin CY, Tseng MC (2011b) Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63(5–12):303–308

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Kim RO, Yoon S et al (2016) Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. PLoS One 11(8):e160763

    Article  Google Scholar 

  • Chun HS, Park D, Eun L et al (2017) Two zinc-aminoclays’ in-vitro cytotoxicity assessment in HeLa cells and in-vivo embryotoxicity assay in zebrafish. Ecotoxicol Environ Safe 137:103–112

    Article  CAS  Google Scholar 

  • Clemente Z, Castro V, Moura M et al (2014) Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol 147:129–139

    Article  CAS  PubMed  Google Scholar 

  • Collins JE, White S, Searle SMJ et al (2012) Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res 22(10):2067–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui B, Ren L, Xu QH et al (2016) Silver nanoparticles inhibited erythrogenesis during zebrafish embryogenesis. Aquat Toxicol 177:295–305

    Article  CAS  PubMed  Google Scholar 

  • Czupryna J, Tsourkas A (2006) Suicide gene delivery by calcium phosphate nanoparticles: a novel method of targeted therapy for gastric cancer. Cancer Biol Ther 5:1691–1692

    Article  CAS  PubMed  Google Scholar 

  • Da SG, Clemente Z, Khan LU et al (2018) Toxicity assessment of TiO2-MWCNT nanohybrid material with enhanced photocatalytic activity on Danio rerio (zebrafish) embryos. Ecotoxicol Environ Safe 165:136–143

    Article  CAS  Google Scholar 

  • Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res 63:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar RA, Naikoo GA, Kalambate PK et al (2015) Enhancement of the energy storage properties of super capacitors using graphene nano sheets dispersed with macro-structured porous copper oxide. Electrochim Acta 163:196–203

    Article  CAS  Google Scholar 

  • Das S, Mitra S, Khurana SMP et al (2013) Nanomaterials for biomedical applications. Front Life Sci 7:90–98

    Article  CAS  Google Scholar 

  • Dayal N, Thakur M, Patil P et al (2016) Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio). J Nanopart Res 18:291

    Article  CAS  Google Scholar 

  • Dayal N, Singh D, Patil P et al (2017) Effect of bioaccumulation of gold nanoparticles on ovarian morphology of female zebrafish (Danio rerio). World J Pathol 6:1

    CAS  Google Scholar 

  • De Crozals G, Bonnet R, Farre C et al (2016) Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today 11(4):435–463

    Article  CAS  Google Scholar 

  • De León J, Cotto M, Márquez F (2019) Toxicology of nanomaterials on zebrafish. Am J Eng Appl Sci 12:193–203

    Article  Google Scholar 

  • De Oliveira GM, Kist LW, Pereira TC et al (2014) Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Phys Part C 162:77–84

    Google Scholar 

  • Dedeh A, Ciutat A, Treguer-Delapierre M et al (2015) Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 9:71–80

    Article  CAS  PubMed  Google Scholar 

  • Dellinger B, Pryor WA, Cueto R et al (2001) Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol 14:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Denluck L, Wu F, Crandon LE et al (2018) Reactive oxygen species generation is likely a driver of copper-based nanomaterial toxicity. Environ Sci 5(6):1473–1481

    CAS  Google Scholar 

  • Devi GP, Ahmed KBA, Varsha MS et al (2015) Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–156

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Guo L (2013) Immobilized transferrin Fe3O4@ SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomedicine 8:4631–4639

    PubMed  PubMed Central  Google Scholar 

  • Djurisic AB, Leung YH, Ng AM et al (2015) Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11(1):26–44

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V, Tran CL et al (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10:252–256

    Article  CAS  PubMed  Google Scholar 

  • Drobne D (2018) Spotlighting CLH report for TiO2: Nano-safety perspective. Chem Eng J 340:192–195

    Article  CAS  Google Scholar 

  • Fako VE, Furgeson DY (2009) Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61(6):478–486

    Article  CAS  PubMed  Google Scholar 

  • Friedman AD, Claypool SE, Liu R (2013) The smart targeting of nanoparticles. Curr Pharm Des 19:6315–6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gad SC (2006) Animal models in toxicology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gad SC (2015) Animal models in toxicology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Ganesan S, Thirumurthi NA, Raghunath A et al (2016) Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos. J Appl Toxicol 36:554–567

    Article  CAS  PubMed  Google Scholar 

  • Garcia GR, Noyes PD, Tanguay RL (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther 161:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geffroy B, Ladhar C, Cambier S et al (2012) Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Nanotoxicology 6:144–160

    Article  CAS  PubMed  Google Scholar 

  • George S, Pokhrel S, Xia T et al (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4:15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George S, Lin S, Ji Z et al (2012) Surface defects on plate-shaped silver nanoparticles contributes to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George S, Gardner H, Seng EK et al (2014) Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environ Sci Technol 48:6374–6382

    Article  CAS  PubMed  Google Scholar 

  • Gerber A, Bundschuh M, Klingelhofer D et al (2013) Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol 8:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghobadian M, Nabiuni M, Parivar K et al (2015) Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicol Environ Safe 122:260–267

    Article  CAS  Google Scholar 

  • Giannakou C, Park MV, de Jong WH et al (2016) A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine 11:2935–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel S, Chen F, Cai WB (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10:631–645

    Article  CAS  PubMed  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  PubMed  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA et al (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  PubMed  Google Scholar 

  • Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Griffitt RJ, Feswick A, Weil R et al (2011) Investigation of acute nanoparticulate aluminum toxicity in zebrafish. Environ Toxicol 26(5):541–551

    Article  CAS  PubMed  Google Scholar 

  • Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123(1):1–36

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi S, Serpone N (eds) (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  • Hou J, Wang X, Hayat T et al (2017) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209–217

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J, Vijver MG, Richardson MK et al (2014) Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 33:2859–2868

    Article  CAS  PubMed  Google Scholar 

  • Jang GH, Hwang MP, Kim SY et al (2014) A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials 35:440–449

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Ye K (2007) Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23:32–41

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zheng S, Fu Z (2011) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol 30:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Johnston HJ, Verdon R, Gillies S et al (2018) Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 48:252–271

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler R (2011) Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 119(3):120–125

    Article  Google Scholar 

  • Kettleborough RN, Busch-Nentwich EM, Harvey SA et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806

    Article  CAS  Google Scholar 

  • Kim KT, Zaikova T, Hutchison JE et al (2013) Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133(2):275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dynam 203(3):253–310

    Article  CAS  Google Scholar 

  • Kotil T, Akbulut C, Yon ND (2017) The effects of titanium dioxide nanoparticles on ultra-structure of zebrafish testis (Danio rerio). Micron 100(6):38–44

    Article  CAS  PubMed  Google Scholar 

  • Kovrižnych JA, Sotniková R, Zeljenková D et al (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stage comparative study. Interdiscip Toxicol 6(2):67–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnaraj C, Harper SL, Yun SI (2016) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). J Hazard Mater 301:480–491

    Article  CAS  PubMed  Google Scholar 

  • Kteeba SM, El-Adawi HI, El-Rayis OA et al (2017) Zinc oxide nanoparticle toxicity in embryonic zebrafish: mitigation with different natural organic matter. Environ Pollut 230:1125–1140

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Browning LM, Nallathamby PD et al (2012) In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 25:1029–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IC, Ko JW, Park SH et al (2016) Comparative toxicity and bio-distribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine 11:2883–2900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YF, Chen C (2011) Fate and toxicity of metallic and metal containing nanoparticles for biomedical applications. Small 7(21):2965–2980

    Article  CAS  PubMed  Google Scholar 

  • Li N, Sioutas C, Cho A et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu B, Li XL et al (2014) SiO2 nanoparticles change colour preference and cause Parkinson’s-like behaviour in zebrafish. Sci Rep 4:3810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin S, Zhao Y, Xia T et al (2011) High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 5(9):7284–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Zhao Y, Nel AE et al (2013) Zebrafish: an in vivo model for nano EHS studies. Small 9(9–10):1608–1618

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Astruc D (2018) Atomically precise copper nanoclusters and their applications. Coord Chem Rev 359:112–126

    Article  CAS  Google Scholar 

  • Llorens A, Lloret E, Picouet PA et al (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Tech 24(1):19–29

    Article  CAS  Google Scholar 

  • Ma YB, Lu CJ, Junaid M et al (2018) Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish. Chemosphere 207:320–328

    Article  CAS  PubMed  Google Scholar 

  • Mao ZG, Qing ZH, Qing TP et al (2015) Poly(thymine)-templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal Chem 87:7454–7460

    Article  CAS  PubMed  Google Scholar 

  • McNamara K, Tofail SA (2013) Biomedical applications of nanoalloys. In: Nanoalloys: from fundamentals to emergent applications. Elsevier Inc., Amsterdam, pp 345–371

    Google Scholar 

  • McNamara K, Tofail SA (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17:27981–27995

    Article  CAS  PubMed  Google Scholar 

  • Mesquita B, Lopes I, Silva S et al (2017) Gold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio). J Toxicol Environ Health Part A 80(13–15):672–687

    Article  CAS  Google Scholar 

  • Miao W, Zhu B, Xiao X et al (2015) Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat Toxicol 161:117–126

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914

    Article  CAS  Google Scholar 

  • Mishra PK, Mishra H, Ekielski A et al (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22:1825–1834

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Kobayashi N, Shinohara N et al (2010) Hazard assessments of manufactured nanomaterials. J Occup Health 52:325–334

    Article  CAS  PubMed  Google Scholar 

  • Namvar F, Rahman HS, Mohamad R et al (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine 9:2479–2488

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning L, Zhu B, Gao T (2017) Gold nanoparticles: promising agent to improve the diagnosis and therapy of cancer. Curr Drug Metab 18(11):1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Noman MT, Ashraf MA, Ali A (2018) Synthesis and applications of nano-TiO2: a review. Environ Sci Pollut Res 26:3262–3291

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  PubMed  Google Scholar 

  • Ong KJ, Zhao X, Thistle ME et al (2014) Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8:295–304

    Article  CAS  PubMed  Google Scholar 

  • Pecoraro R, Salvaggio A, Marino F et al (2017) Metallic nano-composite toxicity evaluation by zebrafish embryo toxicity test with identification of specific exposure biomarkers. Curr Protoc Toxicol 74:1–14

    Article  CAS  PubMed  Google Scholar 

  • Perugini P, Simeoni S, Scalia S et al (2002) Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Int J Pharm 246:37–45

    Article  CAS  PubMed  Google Scholar 

  • Powers CM, Slotkin TA, Seidler FJ et al (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33(6):708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prow T, Grebe R, Merges C et al (2006) Nanoparticle tethered biosensors for auto regulated gene therapy in hyperoxic endothelium. Nanomed Nanotechnol Biol Med 2(4):276

    Article  Google Scholar 

  • Ramachandran R, Krishnaraj C, Sivakumar AS et al (2017) Anti-cancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater Sci Eng 73:674–683

    Article  CAS  Google Scholar 

  • Ramachandran R, Krishnaraj C, Kumar VA et al (2018) In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. Biotech 8(10):441

    Google Scholar 

  • Renier C, Faraco JH, Bourgin P et al (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genom 17(4):237–253

    Article  CAS  Google Scholar 

  • Ribas L, Piferrer F (2014) The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev Aquac 6:209–240

    Article  Google Scholar 

  • Rizzo LY, Golombek SK, Mertens ME et al (2013) In vivo nanotoxicity testing using the zebrafish embryo assay. J Mater Chem B 1(32):3918–3925

    Article  CAS  Google Scholar 

  • Rocco L, Santonastaso M, Mottola F et al (2015) Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol Environ Safe 113:223–230

    Article  CAS  Google Scholar 

  • Rudramurthy GR, Swamy MK (2018) Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 23(8):1185–1204

    Article  CAS  PubMed  Google Scholar 

  • Samaee SM, Rabbani S, Jovanovic B et al (2015) Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Safe 116:121–128

    Article  CAS  Google Scholar 

  • Sangabathuni S, Murthy RV, Chaudhary PM et al (2017) Mapping the glyco-gold nanoparticles of different shapes toxicity, biodistribution and sequestration in adult zebrafish. Sci Rep 7(1):1–7

    Article  CAS  Google Scholar 

  • Sarmah S, Marrs J (2016) Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int J Mol Sci 17(12):2123

    Article  PubMed Central  CAS  Google Scholar 

  • Sato Q, Zhang Y, Kusaka K et al (1998) Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health Part A 53:423–438

    Article  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM et al (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotech 2(5):544–568

    Article  CAS  Google Scholar 

  • Seaton A, Tran L, Aitken R et al (2010) Nanoparticles, human health hazard and regulation. J R Soc Interface 7:S119–S129

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Kostrzewa RM (2006) Neurotoxins and neurotoxicity mechanisms. An overview. Neurotox Res 10:263–287

    Article  CAS  PubMed  Google Scholar 

  • Selgrade MK (2007) Immunotoxicity: the risk is real. Toxicol Sci 100(2):328–332

    Article  CAS  PubMed  Google Scholar 

  • Shaw BJ, Liddle CC, Windeatt KM et al (2016) A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations. Arch Toxicol 90(9):2077–2107

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Wang L, Su M et al (2016) Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). Environ Toxicol 31:163–175

    Article  CAS  PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Spence R, Smith C (2005) Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim Behav 69(6):1317–1323

    Article  Google Scholar 

  • Spence R, Gerlach G, Lawrence C et al (2008) The behavior and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83(1):13–34

    Article  PubMed  Google Scholar 

  • Stainier DY, Fishman MC (1994) The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc Med 4:207–212

    Article  CAS  PubMed  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W et al (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  PubMed  Google Scholar 

  • Strähle U, Scholz S, Geisler R (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Zhang G, He Z et al (2016) Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Int J Nanomedicine 11:905–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrealba D, More-Bayona JA, Wakaruk J et al (2019) Innate immunity provides biomarkers of health for teleosts exposed to nanoparticles. Front Immunol 9:3074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Truong L, Saili KS, Miller JM et al (2012) Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Phys C 155(2):269–274

    CAS  Google Scholar 

  • Truong L, Tilton SC, Zaikova T et al (2013) Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology 7:192–201

    Article  CAS  PubMed  Google Scholar 

  • Vicario-Pares U, Lacave JM, Reip P et al (2018) Cellular and molecular responses of adult zebrafish after exposure to CuO nanoparticles or ionic copper. Ecotoxicology 27(1):89–101

    Article  CAS  PubMed  Google Scholar 

  • Villacis RAR, Filho JS, Pina B et al (2017) Integrated assessment of toxic effects of maghemite (g-Fe2O3) nanoparticles in zebrafish. Aquat Toxicol 191:219–225

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang M (2018) Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. Sci Total Environ 625:940–962

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang W (2014) Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms. J Zhejiang Univ SC A 15:573592

    Article  Google Scholar 

  • Wang YJ, He ZZ, Fang YW et al (2014) Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina. Int J Ophthalmol 7:917–923

    PubMed  PubMed Central  Google Scholar 

  • Weiss C, Diabate S (2011) A special issue on nanotoxicology. Arch Toxicol 85:705–706

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (1995) The Zebrafish book: a guide for the laboratory use of Zebrafish (Brachy Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Westerfield M (2007) The Zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Win-Shwe TT, Fujimaki H (2011) Nanoparticles and neurotoxicity. Int J Mol Sci 12:6267–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CM, Playle RC, Hogstrand C (1999) Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18:71–83

    Article  CAS  Google Scholar 

  • Wu T, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38(1):25–40

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Zhao Y, Sager T et al (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia G, Liu T, Wang Z et al (2016) The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artif Cells Nanomed Biotechnol 44:1116–1121

    CAS  PubMed  Google Scholar 

  • Xing B, Vecitis CD, Senesi N (eds) (2016) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Hoboken

    Google Scholar 

  • Xiong D, Fang T, Yu L et al (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Dong X, Zhang Z et al (2015) Assessment of immunotoxicity of dibutyl phthalate using live zebrafish embryos. Fish Shellfish Immunol 45:286–292

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang R, Zhang T et al (2017) Copper impairs zebrafish swim bladder development by down regulating Wnt signaling. Aquat Toxicol 192:155–164

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Foote M, Prow TW (2015) Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(3):428–445

    Article  CAS  PubMed  Google Scholar 

  • Yoo MH, Rah YC, Choi J et al (2016) Embryo toxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngol 83:168–174

    Article  PubMed  Google Scholar 

  • Yoon KY, HoonByeon J, Park JH et al (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sun X, Chen L et al (2012) Toxicological effect of joint cadmium selenium quantum dots and copper ion exposure on zebrafish. Environ Toxicol Chem 31:2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Liu ZG, Shen W et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  PubMed Central  CAS  Google Scholar 

  • Zhao XS, Wang ST, Wu Y et al (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136:49–59

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Zhu L, Duan Z et al (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A 43(3):278–284

    Article  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X et al (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20(19):195103

    Article  PubMed  CAS  Google Scholar 

  • Zhu JJ, Xu YQ, He JH et al (2014) Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J Appl Toxicol 34(2):139–148

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh A. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maheshwari, R.A., Sen, D.B., Zanwar, A.S., Sen, A.K. (2021). Evaluation of Nanotoxicity Using Zebrafish: Preclinical Model. In: Shah, N. (eds) Nanocarriers: Drug Delivery System. Springer, Singapore. https://doi.org/10.1007/978-981-33-4497-6_7

Download citation

Publish with us

Policies and ethics