Skip to main content

Introduction to Particle Swarm Optimization and Its Paradigms: A Bibliographic Survey

  • Chapter
  • First Online:
AI and Machine Learning Paradigms for Health Monitoring System

Part of the book series: Studies in Big Data ((SBD,volume 86))

Abstract

Particle swarm optimization (PSO) belongs to evolutionary computation algorithms that are inspired by the swarming motion of living organisms. PSO has a humble beginning where it was only able to solve the single-objective continuous optimization problems. Since then through numerous refinements and contribution voiding weakness and combining elements of other methods proposing modifications, hybridizations, velocity update rules, and population topologies, PSO has matured with immense scope of real-world applications. Though swarm stagnation and dynamic environment are still identified as significant challenges nevertheless, continued interest in PSO shows no sign of slowing. More than ten thousand contributions in the IEEE database alone after 25 years of the first appearance is a strong indicator that the mentioned challenges will come to pass. This chapter enlists and discusses in brief the major developments in PSO along with the area of successful application in a concise form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelley, T.: Optimization, an Important Stage of Engineering Design. Publications (2010). https://digitalcommons.usu.edu/ncete_publications/32/

  2. Wets, R.J.-B.: On the Relation between Stochastic and Deterministic Optimization (1975). https://doi.org/10.1007/978-3-642-46317-4_26

  3. Cavazzuti, M.: Optimization Methods. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31187-1

  4. Andradóttir, S.: A global search method for discrete stochastic optimization. SIAM J. Optim. (1996). https://doi.org/10.1137/0806027

    Article  MathSciNet  MATH  Google Scholar 

  5. Iqbal, A., et al.: Metaheurestic algorithm based hybrid model for identification of building sale prices. In: Springer Nature Book: Metaheuristic and Evolutionary Computation: Algorithms and Applications. Studies in Computational Intelligence (2020). https://doi.org/10.1007/978-981-15-7571-6_32

  6. Faiz Minai, A., et al.: Metaheuristics paradigms for renewable energy systems: advances in optimization algorithms. In: Springer Nature Book: Metaheuristic and Evolutionary Computation: Algorithms and Applications. Studies in Computational Intelligence (2020). https://doi.org/10.1007/978-981-15-7571-6_2

  7. Yadav, A.K., et al.:Optimization of tilt angle for intercepting maximum solar radiation for power generation. In: Springer Nature Book: Optimization of Power System Problems (Methods, Algorithms and MATLAB Codes), pp. 203–232 (2020). https://doi.org/10.1007/978-3-030-34050-6_9

  8. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. IOP Publishing Ltd (1997). https://stacks.iop.org/0750308958

  9. Whitley, D.: A genetic algorithm tutorial. Stat. Comput.4(2) (1994). https://doi.org/10.1007/BF00175354

  10. Price, K.V.: Differential Evolution. Intell. Syst. Ref. Libr. (2013). https://doi.org/10.1007/978-3-642-30504-7_8

    Article  Google Scholar 

  11. Dorigo, M., Socha, K.: Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC (2007). https://www.taylorfrancis.com/books/9781420010749

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  13. Zhu, C., Zhang, J., Liu, Y., Ma, D., Li, M., Xiang, B.: Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China. Nat. Hazards 100(1), 173–204 (2020). https://doi.org/10.1007/s11069-019-03806-x

    Article  Google Scholar 

  14. Azad, A., et al.: Novel approaches for air temperature prediction: a comparison of four hybrid evolutionary fuzzy models. Meteorol. Appl. (2019). https://doi.org/10.1002/met.1817

    Article  Google Scholar 

  15. Kramer, O.: Genetic Algorithm Essentials (2017). https://doi.org/10.1007/978-3-319-52156-5

  16. Eberhart, Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, pp. 81–86 (2001. https://doi.org/10.1109/CEC.2001.934374

  17. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2008). https://doi.org/10.1109/TEVC.2006.880326

    Article  Google Scholar 

  18. Hassan, R.: Particle swarm optimization: method and applications. Present. https://ocw.mit.edu (2004). https://dspace.mit.edu/bitstream/handle/1721.1/68163/16-888-spring-2004/contents/lecture-notes/l13_msdo_pso.pdf

  19. Ou, O., Lin, W.: Comparison between PSO and GA for parameters optimization of PID controller. In: 2006 International Conference on Mechatronics and Automation, pp. 2471–2475 (2006). https://doi.org/10.1109/ICMA.2006.257739

  20. Li, C.: Particle Swarm Optimization in Stationary and Dynamic Environments (2010). https://bee22.com/resources/Li%202010%20thesis.pdf

  21. Pedersen, M.E.H.: Tuning & simplifying heuristical optimization. University of Southampton (2010). https://eprints.soton.ac.uk/id/eprint/342792

  22. Bai, Q.: Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3(1), 180 (2010). https://doi.org/10.5539/cis.v3n1p180

    Article  Google Scholar 

  23. Schoeman, I.L.: Niching in particle swarm optimization. University of Pretoria (2010). https://repository.up.ac.za/handle/2263/26548?show=full

  24. Liang, J.: Novel particle swarm optimizers with hybrid, dynamic and adaptive neighborhood structures (2008). https://bee22.com/resources/Jing%202008.pdf

  25. Helwig, S.: Particle swarms for constrained optimization (2010). https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/1328

  26. Dasheng, L.I.U.: Multi objective particle swarm optimization: algorithms and applications (2009). https://scholarbank.nus.edu.sg/handle/10635/16724

  27. Omran, M.G.H.: Particle swarm optimization methods for pattern recognition and image processing. University of Pretoria (2006). https://repository.up.ac.za/bitstream/handle/2263/29826/Complete.pdf?sequence=11

  28. Birattari, M.: The Problem of Tuning Metaheuristics. PhD, Fac. des Sci. Appliquées, Univ. Libr. Bruxelles (2006). https://www.iospress.nl/book/the-problem-of-tuning-metaheuristics/

  29. Schmitt, B.I.: Convergence analysis for particle swarm optimization (2015). https://kamenpenkov.files.wordpress.com/2016/01/schmitt-2015.pdf

  30. Talukder, S.: Mathematicle modelling and applications of particle swarm optimization (2011)

    Google Scholar 

  31. Vis, J.K.: Particle Swarm Optimizer for Finding Robust Optima. LIACS, Holl. (2009). https://liacs.leidenuniv.nl/assets/Bachelorscripties/2009-12JonathanVis.pdf

  32. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization and intelligence: advances and applications (2010). https://www.igi-global.com/book/particle-swarm-optimization-intelligence/37246

  33. Mikki, S.M., Kishk, A.A.: Particle swarm optimization: a physics-based approach. Synth. Lect. Comput. Electromagn. 3(1), 1–103 (2008). https://doi.org/10.2200/S00110ED1V01Y200804CEM020

    Article  Google Scholar 

  34. Zomaya, A.Y.: Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies. Springer Science & Business Media, 2006.https://www.springer.com/gp/book/9780387405322

  35. Clerc, M.: Particle Swarm Optimization, vol. 93. Wiley (2010). https://doi.org/10.1002/9780470612163.fmatter

  36. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl.2008 (2008). https://doi.org/10.1155/2008/685175

  37. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell.1(1), 33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0

  38. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput.6(4), 467–484 (2007). https://doi.org/10.1007/s11047-007-9049-5

  39. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput.7(1), 109–124 (2008). https://doi.org/10.1007/s11047-007-9050-z

  40. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization BT—Evolutionary Programming VII (1998). https://doi.org/10.1007/BFb0040810

  41. Rini, D.P., Shamsuddin, S.M., Yuhaniz, S.S.: Particle swarm optimization: technique, system and challenges. Int. J. Comput. Appl.14(1), 19–26 (2011). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.5070&rep=rep1&type=pdf

  42. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng.2015, 1–38 (2015). https://doi.org/10.1155/2015/931256. https://www.hindawi.com/journals/mpe/2015/931256/

  43. Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2006)

    Article  MATH  Google Scholar 

  44. Eberhart, R.C., Shi, Y.: Particle swarm optimization: Developments, applications and resources. Proc. IEEE Conf. Evol. Comput. ICEC 1, 81–86 (2001). https://doi.org/10.1109/cec.2001.934374

    Article  Google Scholar 

  45. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  46. de Oca, M.A.M.: Particle swarm optimization introduction. IRIDIA-CoDE, Univ. Libr. Bruxelles (2007)

    Google Scholar 

  47. Dorigo, M., de Oca, M.A.M., Engelbrecht, A.: Particle swarm optimization. Scholarpedia 3(11), 1486 (2008)

    Article  Google Scholar 

  48. Selleri, S., Mussetta, M., Pirinoli, P., Zich, R.E., Matekovits, L.: Some insight over new variations of the particle swarm optimization method. IEEE Antennas Wirel. Propag. Lett. 5, 235–238 (2006). https://doi.org/10.1109/LAWP.2006.874071

    Article  MATH  Google Scholar 

  49. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), pp. 80–87 (2003)

    Google Scholar 

  50. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  51. Liu, G., Chen, W., Chen, H., Xie, J.: A quantum particle swarm optimization algorithm with teamwork evolutionary strategy. Math. Probl. Eng. 2019, 1805198 (2019). https://doi.org/10.1155/2019/1805198

    Article  MathSciNet  MATH  Google Scholar 

  52. hydroPSO—Mathematical software—swMATH. https://www.swmath.org/software/24340. Accessed 28 June 2020

  53. Zambrano-Bigiarini, M., Rojas, R.: A model-independent Particle Swarm Optimisation software for model calibration. Environ. Model. Softw. 43, 5–25 (2013). https://doi.org/10.1016/j.envsoft.2013.01.004

    Article  Google Scholar 

  54. Koyuncu, H., Ceylan, R.: Scout particle swarm optimization. In: 6th European Conference of the International Federation for Medical and Biological Engineering, pp. 82–85 (2015)

    Google Scholar 

  55. Elshamy, W., Emara, H.M., Bahgat, A.: Clubs-based particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 289–296 (2007)

    Google Scholar 

  56. Abdelbar, A.M., Abdelshahid, S., Wunsch, D.C.: Fuzzy PSO: a generalization of particle swarm optimization. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 2, pp. 1086–1091 (2009). https://doi.org/10.1109/IJCNN.2005.1556004

  57. Lee, C.M., Ko, C.N.: Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing (2009). https://doi.org/10.1016/j.neucom.2009.07.005

    Article  Google Scholar 

  58. Wang, H., Li, H., Liu, Y., Li, C., Zeng, S.: Opposition-based particle swarm algorithm with Cauchy mutation (2007). https://doi.org/10.1109/CEC.2007.4425095

  59. Jiang, B., Wang, N., Wang, L.: Particle swarm optimization with age-group topology for multimodal functions and data clustering. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3134–3145 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xie, X.-F., Zhang, W.-J., Yang, Z.-L.: Adaptive particle swarm optimization on individual level. In: 6th International Conference on Signal Processing, 2002, vol. 2, pp. 1215–1218 (2002)

    Google Scholar 

  61. Lu, Y.C., Jan, J.C., Hung, S.L., Hung, G.H.: Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures. Eng. Optim. (2013). https://doi.org/10.1080/0305215X.2012.729054

    Article  Google Scholar 

  62. Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, L.M.: An improved GA and a novel PSO-GA-based hybrid algorithm. Inf. Process. Lett. 93(5), 255–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Anand, A., Suganthi, L.: Hybrid GA-PSO optimization of artificial neural network for forecasting electricity demand. Energies 11(4), 728 (2018)

    Article  Google Scholar 

  64. Elloumi, W., Baklouti, N., Abraham, A., Alimi, A.M.: The multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization. J. Intell. Fuzzy Syst. 27(1), 515–525 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Niknam, T., Narimani, M.R., Jabbari, M.: Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. Int. Trans. Electr. Energy Syst. 23(7), 975–1001 (2013)

    Article  Google Scholar 

  66. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  67. Cheng, S., Chen, M.-Y., Fleming, P.J.: Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system. Neurocomputing 148, 23–29 (2015)

    Article  Google Scholar 

  68. Zhang, G., Cheng, Y., Yang, F., Pan, Q.: Particle filter based on PSO. In: 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), Oct 2008, pp. 121–124. https://doi.org/10.1109/ICICTA.2008.262

  69. Ramezani, F., Lu, J., Hussain, F.K.: Task-based system load balancing in cloud computing using particle swarm optimization. Int. J. Parallel Program. (2014). https://doi.org/10.1007/s10766-013-0275-4

    Article  Google Scholar 

  70. Jordehi, A.R.: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl. Soft Comput. 26, 401–417 (2015)

    Article  Google Scholar 

  71. Parsopoulos, K.E.: UPSO: a unified particle swarm optimization scheme. Lect. Ser. Comput. Comput. Sci. 1, 868–873 (2004)

    MathSciNet  Google Scholar 

  72. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  73. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  74. Wang, H., Wu, Z., Rahnamayan, S., Li, C., Zeng, S., Jiang, D.: Particle swarm optimisation with simple and efficient neighbourhood search strategies. Int. J. Innov. Comput. Appl. 3(2), 97–104 (2011)

    Article  Google Scholar 

  75. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  76. Khan, M.S., Lee, M.: Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy49(1) (2013). https://doi.org/10.1016/j.energy.2012.11.028

  77. Park, J., Choi, K., Allstot, D.J.: Parasitic-aware RF circuit design and optimization. IEEE Trans Circuits Syst. I Regul. Pap. (2004). https://doi.org/10.1109/TCSI.2004.835691

    Article  Google Scholar 

  78. Ranaee, V., Ebrahimzadeh, A., Ghaderi, R.: Application of the PSO–SVM model for recognition of control chart patterns. ISA Trans. 49(4), 577–586 (2010)

    Article  Google Scholar 

  79. Venayagamoorthy, G.K., Zha, W.: Comparison of nonuniform optimal quantizer designs for speech coding with adaptive critics and particle swarm. IEEE Trans. Ind. Appl. (2007). https://doi.org/10.1109/TIA.2006.885897

    Article  Google Scholar 

  80. Nenortaite, J., Simutis, R.: Adapting particle swarm optimization to stock markets (2005). https://doi.org/10.1109/ISDA.2005.17

  81. Cabrerizo, F.J., Herrera-Viedma, E., Pedrycz, W.: A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur. J. Oper. Res. (2013). https://doi.org/10.1016/j.ejor.2013.04.046

    Article  MathSciNet  MATH  Google Scholar 

  82. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: Metaheuristics in stochastic combinatorial optimization : a survey. Gall. Rass. Bimest. Di Cult. 08, 1–58 (2006). [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3639&rep=rep1&type=pdf

  83. Ahangarani, M.L., Aragh, N.O., Mojeddifar, S., Chegeni, M.H.: A combination of probabilistic neural network (PNN) and particle swarm optimization (PSO) algorithms to map hydrothermal alteration zones using ASTER data. Earth Sci. Inf.13(3), 929–937 (2020). https://doi.org/10.1007/s12145-020-00479-0

  84. Chatterjee, A., Pulasinghe, K., Watanabe, K., Izumi, K.: A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans. Ind. Electron. (2005). https://doi.org/10.1109/TIE.2005.858737

    Article  Google Scholar 

  85. Jatmiko, W., Sekiyama, K., Fukuda, T.: A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement. IEEE Comput. Intell. Mag. 2(2), 37–51 (2007). https://doi.org/10.1109/MCI.2007.353419

    Article  Google Scholar 

  86. Chuang, L.-Y., Chang, H.-W., Tu, C.-J., Yang, C.-H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008). https://doi.org/10.1016/j.compbiolchem.2007.09.005

    Article  MATH  Google Scholar 

  87. Duan, H., Wei, X., Dong, Z.: Multiple UCAVs cooperative air combat simulation platform based on PSO, ACO, and game theory. IEEE Aerosp. Electron. Syst. Mag. 28(11), 12–19 (2013)

    Article  Google Scholar 

  88. Messerschmidt, L., Engelbrecht, A.P.: Learning to play games using a PSO-based competitive learning approach. IEEE Trans. Evol. Comput. 8(3), 280–288 (2004)

    Article  Google Scholar 

  89. Kolomvatsos, K., Hadjieftymiades, S.: On the use of particle swarm optimization and kernel density estimator in concurrent negotiations. Inf. Sci. (Ny) 262, 99–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  90. Pandey, S.K., Mohanty, S.R., Kishor, N., Catalão, J.P.S.: Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Syst. 63, 887–900 (2014)

    Article  Google Scholar 

  91. Nedic, N., Prsic, D., Dubonjic, L., Stojanovic, V., Djordjevic, V.: Optimal cascade hydraulic control for a parallel robot platform by PSO. Int. J. Adv. Manuf. Technol. 72(5–8), 1085–1098 (2014)

    Article  Google Scholar 

  92. Zubair, M., Moinuddin, M.: Joint optimization of microstrip patch antennas using particle swarm optimization for UWB systems. Int. J. Antennas Propag.2013 (2013)

    Google Scholar 

  93. Kim, Y.G., Lee, M.J.: Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Commun. Mag. 52(1), 122–129 (2014)

    Article  Google Scholar 

  94. Bozorgi-Amiri, A., Jabalameli, M.S., Alinaghian, M., Heydari, M.: A modified particle swarm optimization for disaster relief logistics under uncertain environment. Int. J. Adv. Manuf. Technol. 60(1–4), 357–371 (2012)

    Article  Google Scholar 

  95. Sadeghi, J., Sadeghi, S., Niaki, S.T.A.: Optimizing a hybrid vendor-managed inventory and transportation problem with fuzzy demand: an improved particle swarm optimization algorithm. Inf. Sci. (Ny) 272, 126–144 (2014)

    Article  MathSciNet  Google Scholar 

  96. Wang, Y., Li, L.: A PSO algorithm for constrained redundancy allocation in multi-state systems with bridge topology. Comput. Ind. Eng. 68, 13–22 (2014)

    Article  Google Scholar 

  97. Zhang, Y., Gallipoli, D., Augarde, C.: Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization. Comput. Geotech. 48, 293–303 (2013)

    Article  Google Scholar 

  98. Lee, C.-H., Shih, K.-S., Hsu, C.-C., Cho, T.: Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Med. Eng. Phys. 36(1), 57–64 (2014)

    Article  Google Scholar 

  99. Khajeh, M., Kaykhaii, M., Sharafi, A.: Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples. J. Ind. Eng. Chem. 19(5), 1624–1630 (2013)

    Article  Google Scholar 

  100. Skvortsov, A.N.: Estimation of rotation ambiguity in multivariate curve resolution with charged particle swarm optimization (cPSO-MCR). J. Chemom. 28(10), 727–739 (2014)

    Article  Google Scholar 

  101. Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)

    Article  Google Scholar 

  102. Zhang, Y.-D., Wang, S., Wu, L.: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog. Electromagn. Res. 109, 325–343 (2010)

    Article  Google Scholar 

  103. Sharif, M., Amin, J., Raza, M., Yasmin, M., Satapathy, S.C.: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit. Lett.129, 150–157 (2020). https://www.sciencedirect.com/science/article/pii/S016786551930337X

  104. Dindar, Z.A., Marwala, T.: Option pricing using a committee of neural networks and optimized networks. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), vol. 1, pp. 434–438 (2004)

    Google Scholar 

  105. Xu, F., Chen, W.: Stochastic portfolio selection based on velocity limited particle swarm optimization. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp. 3599–3603 (2006)

    Google Scholar 

  106. Pang, W., Wang, K.P., Zhou, C.G., Dong, L. J.: Fuzzy discrete particle swarm optimization for solving traveling salesman problem (2004). https://doi.org/10.1109/cit.2004.1357292

  107. Shen, X., Li, Y., Wang, W., Zheng, B.: A dynamic adaptive particle swarm optimization for knapsack problem. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp. 3183–3187 (2006)

    Google Scholar 

  108. Sedghi, M., Aliakbar-Golkar, M., Haghifam, M.-R.: Distribution network expansion considering distributed generation and storage units using modified PSO algorithm. Int. J. Electr. Power Energy Syst. 52, 221–230 (2013)

    Article  Google Scholar 

  109. Syahputra, R., Robandi, I., Ashari, M.: Reconfiguration of distribution network with distributed energy resources integration using PSO algorithm. Telkomnika 13(3), 759 (2015)

    Article  Google Scholar 

  110. Jornod, G., Di Mario, E., Navarro, I., Martinoli, A.: SwarmViz: an open-source visualization tool for Particle Swarm Optimization. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 179–186 (2015)

    Google Scholar 

  111. Solomon, S., Thulasiraman, P., Thulasiram, R.: Collaborative multi-swarm PSO for task matching using graphics processing units. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1563–1570 (2011)

    Google Scholar 

  112. Zhang, Y., Huang, D., Ji, M., Xie, F.: Image segmentation using PSO and PCM with Mahalanobis distance. Expert Syst. Appl. 38(7), 9036–9040 (2011)

    Article  Google Scholar 

  113. Younus, Z.S., et al.: Content-based image retrieval using PSO and k-means clustering algorithm. Arab. J. Geosci. 8(8), 6211–6224 (2015)

    Article  Google Scholar 

  114. Liu, B., Wang, L., Jin, Y.-H.: An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man, Cybern. Part B37(1), 18–27 (2007)

    Google Scholar 

  115. Akjiratikarl, C., Yenradee, P., Drake, P.R.: PSO-based algorithm for home care worker scheduling in the UK. Comput. Ind. Eng. 53(4), 559–583 (2007)

    Article  Google Scholar 

  116. Wang, W., Xu, D., Chau, K., Chen, S.: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD. J. Hydroinformatics 15(4), 1377–1390 (2013)

    Article  Google Scholar 

  117. Bashir, Z.A., El-Hawary, M.E.: Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans. Power Syst. 24(1), 20–27 (2009)

    Article  Google Scholar 

  118. Deng, W., Yao, R., Zhao, H., Yang, X., Li, G.: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput.23(7), 2445–2462 (2019). https://link.springer.com/article/10.1007%2Fs00500-017-2940-9

  119. Yuan, X., Liu, Z., Miao, Z., Zhao, Z., Zhou, F., Song, Y.: Fault diagnosis of analog circuits based on IH-PSO optimized support vector machine. IEEE Access7, 137945–137958 (2019). https://ieeexplore.ieee.org/abstract/document/8846201

  120. Cho, Y., Smith, J.S., Smith, A.E.: Optimizing tactical military MANETs with a specialized PSO. In: IEEE Congress on Evolutionary Computation, pp. 1–6 (2010)

    Google Scholar 

  121. Lin, C.J., Prasetyo, Y.T.: A metaheuristic-based approach to optimizing color design for military camouflage using particle swarm optimization. Color Res. Appl. 44(5), 740–748 (2019)

    Article  Google Scholar 

  122. Raj, S., Ray, K.C.: ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans. Instrum. Meas. 66(3), 470–478 (2017)

    Article  Google Scholar 

  123. Shayeghi, H., Safari, A., Shayanfar, H.A.: PSS and TCSC damping controller coordinated design using PSO in multi-machine power system. Energy Convers. Manag. 51(12), 2930–2937 (2010)

    Article  Google Scholar 

  124. Pan, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  125. Obukhov, S., Ibrahim, A., Diab, A.A.Z., Al-Sumaiti, A.S., Aboelsaud, R.: Optimal performance of dynamic particle swarm optimization based maximum power trackers for stand-alone PV system under partial shading conditions. IEEE Access8, 20770–20785 (2020). https://ieeexplore.ieee.org/document/8957566

  126. Khan, M.S., Lee, M.: Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy 49(1), 146–155 (2013). https://doi.org/10.1016/j.energy.2012.11.028

    Article  Google Scholar 

  127. Qyyum, M.A., Qadeer, K., Lee, S., Lee, M.: Innovative propane-nitrogen two-phase expander refrigeration cycle for energy-efficient and low-global warming potential LNG production. Appl. Therm. Eng. (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Shariq Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.S., Ali, W., Qyyum, M.A., Ansari, K.B., Lee, M. (2021). Introduction to Particle Swarm Optimization and Its Paradigms: A Bibliographic Survey. In: Malik, H., Fatema, N., Alzubi, J.A. (eds) AI and Machine Learning Paradigms for Health Monitoring System. Studies in Big Data, vol 86. Springer, Singapore. https://doi.org/10.1007/978-981-33-4412-9_6

Download citation

Publish with us

Policies and ethics