Skip to main content

Pretreatment and Conversion of Shrimp/Crab Shells into High-Value Products with Ionic Liquids

  • Reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 30 Accesses

Abstract

Due to unique hydrogen bond network and excellent chem-physical properties, ionic liquids (ILs) including deep eutectic solvents (DESs) show great potential in the biomass dissolution and conversion. In this entry, the performance of ILs toward the utilization of shrimp/carb shells is briefly presented. Specifically, the separation and functionalization of chitin, an important component in the waste shrimp/crab shells, are mainly summarized and described. To figure out a comprehensive understanding for chitin utilization from shrimp/crab shells, a schematic structure of shrimp shells is illustrated firstly. And then, some typical methods for chitin preparation via shell treatment with ILs were compared, which are divided into extraction and pulping strategies. As an important precondition for chitin conversion, some progresses related to high solubility of chitin in ILs are also summarized. Finally, this entry provides the conversion of chitin to high-value chemicals using ILs with chitin and shrimp shells as the raw materials. This entry aims to show that ILs including DESs have great potential in waste shrimp and crab shell direct utilization. And with well addressing some existing issues or challenges, the corresponding technologies are expected to achieve widespread and larger-scale applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[Amim][OAc]:

1-Allyl-3-methylimidazolium acetate

[Amim]Br:

1-Allyl-3-methylimidazolium bromide

[Amim]Cl:

1-Allyl-3-methylimidazolium chloride

[Bdmim]Cl:

1-Butyl-2,3-dimethyl-imidazolium chloride

[Bmim][DBP]:

1-Butyl-3-methylimidazolium dibutyl phosphate

[Bmim][DMP]:

1-Butyl-3-methylimidazolium dimethyl phosphate

[Bmim][OAc]:

1-Butyl-3-methylimidazolium acetate

[Bmim]Br:

1-Butyl-3-methylimidazolium bromide

[Bmim]Cl:

1-Butyl-3-methylimidazolium chloride

[Ch]Cl:

Choline chloride

[DIPEA][OAc]:

Diisopropylethylammonium acetate

[DIPEA]P:

Diisopropylethylammonium propanoate

[DMBA][OAc]:

Dimethylbutylammonium acetate

[Emim][DEP]:

1-Ethyl-3-methylimidazolium diethyl phosphate

[Emim][DMP]:

1-Ethyl-3-methylimidazolium dimethyl phosphate

[Emim][Gly]:

1-Ethyl-3-methylimidazolium glycinate

[Emim][Lys]:

1-Ethyl-3-methylimidazolium lysinate

[Emim][OAc]:

1-Ethyl-3-methylimidazolium acetate

[Emim][OBu]:

1-Ethyl-3-methylimidazolium butanoate

[Emim][Oct]:

1-Ethyl-3-methylimidazolium octanoate

[Emim][OFr]:

1-Ethyl-3-methylimidazolium formiate

[Emim][OPt]:

1-Ethyl-3-methylimidazolium pentanoate

[Emim]Cl:

1-Ethyl-3-methylimidazolium chloride

[Hmim]Cl:

1-Hexyl-3-methylimidazolium chloride

[Mmim][DMP]:

1, 3-Dimethylimidazolium dimethyl phosphate

[Omim]Cl:

1-Octyl-3-methylimidazolium chloride

[P(C4)4][Gly]:

Tetrabutylphosphonium glycinate

[P(C4)4][Lys]:

Tetrabutylphosphonium lysinate

[P(C4)4][OPr]:

Tetrabutylphosphonium propionate

[P(C4)4][Val]:

Tetrabutylphosphonium valinate

References

  1. Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L (2015) Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew Chem Int Ed Eng 54:5152–5156

    Article  CAS  Google Scholar 

  2. Sagar N, Soni VP, Bellare JR (2012) Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering. J Biomed Mater Res B Appl Biomater 100:624–636

    Article  Google Scholar 

  3. Miyazaki S, Ishii K, Nadai T (1981) The use of chitin and chitosan as drug carriers. Chem Pharm Bull 29:3067–3069

    Article  CAS  Google Scholar 

  4. Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, Deng H (2020) Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 230:115658

    Article  CAS  Google Scholar 

  5. Hai L, Choi ES, Zhai L, Panicker PS, Kim J (2019) Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. Int J Biol Macromol 144:491–499

    Article  Google Scholar 

  6. Zheng C, Liu X, Luo X, Zheng M, Wang X, Dan W, Jiang H (2019) Development of a novel bio-inspired “cotton-like” collagen aggregate/chitin based biomaterial with a biomimetic 3D microstructure for efficient hemostasis and tissue repair. J Mater Chem B 7:7338–7350

    Article  CAS  Google Scholar 

  7. Zhong T, Wolcott MP, Liu H, Wang J (2019) Developing chitin nanocrystals for flexible packaging coatings. Carbohydr Polym 226:115276

    Article  CAS  Google Scholar 

  8. Liang X, Fan X, Li R, Li S, Shen S, Hu D (2018) Efficient removal of Cr (VI) from water by quaternized chitin/branched polyethylenimine biosorbent with hierarchical pore structure. Bioresour Technol 250:178–184

    Article  CAS  Google Scholar 

  9. Sellaoui L, Franco DSP, Dotto GL, Lima ÉC, Lamine AB (2017) Single and binary adsorption of cobalt and methylene blue on modified chitin: application of the hill and exclusive extended hill models. J Mol Liq 233:543–550

    Article  CAS  Google Scholar 

  10. Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater – a short review. Adv Colloid Interf Sci 152:26–38

    Article  CAS  Google Scholar 

  11. Wansapura PT, Dassanayake RS, Hamood A, Tran P, Moussa H, Abidi N (2017) Preparation of chitin-CdTe quantum dots films and antibacterial effect on Staphylococcus aureus and Pseudomonas aeruginosa. J Appl Polym Sci 134:44904

    Article  Google Scholar 

  12. Zhai X, Sun C, Li K, Guan F, Liu X, Duan J, Hou B (2016) Synthesis and characterization of chitosan–zinc composite electrodeposits with enhanced antibacterial properties. RSC Adv 6:46081–46088

    Article  CAS  Google Scholar 

  13. Wysokowski M, Motylenko M, Stöcker H, Bazhenov VV, Langer E, Dobrowolska A, Czaczyk K, Galli R, Stelling AL, Behm T, Klapiszewski Ł, Ambrożewicz D, Nowacka M, Molodtsov SL, Abendroth B, Meyer DC, Kurzydłowski KJ, Jesionowski T, Ehrlich H (2013) An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem B 1:6469–6476

    Article  CAS  Google Scholar 

  14. Tang H, Lu A, Li L, Zhou W, Xie Z, Zhang L (2013) Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chem Eng J 234:124–131

    Article  CAS  Google Scholar 

  15. PT S, Lakshmanan VK, Raj M, Biswas R, Hiroshi T, Nair SV, Jayakumar R (2013) Evaluation of wound healing potential of beta-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30:523–537

    Article  Google Scholar 

  16. Kumar PTS, Lakshmanan V-K, Biswas R, Nair SV, Jayakumar R (2012) Synthesis and biological evaluation of chitin hydrogel/Nano ZnO composite bandage as antibacterial wound dressing. J Biomed Nanotechnol 8:891–900

    Article  CAS  Google Scholar 

  17. Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26

    Article  CAS  Google Scholar 

  18. Lee YM, Kim SS, Park MH, Song KW, Sung YK, Kang IK (2000) β-Chitin-based wound dressing containing silver sulfurdiazine. J Mater Sci Mater Med 11:817–823

    Article  CAS  Google Scholar 

  19. Yoshifuji A, Noishiki Y, Wada M, Heux L, Kuga S (2006) Esterification of β-chitin via intercalation by carboxylic anhydrides. Biomacromolecules 7:2878–2881

    Article  CAS  Google Scholar 

  20. Kaifu K, Nishi N, Komai T (1981) Preparation of hexanoyl, decanoyl, and dodecanoylchitin. J Polym Sci Polym Chem Ed 19:2361–2363

    Article  CAS  Google Scholar 

  21. Nishi N, Noguchi J, Tokura S, Shiota H (1979) Studies on chitin. I. Acetylation of chitin. Polym J 11:27–32

    Article  CAS  Google Scholar 

  22. Schorigin P, Hait E (1935) Über die Acetylierung des Chitins (Vorläufig. Mitteil.). Ber Dtsch Chem Ges A B Ser 68:971–973

    Article  Google Scholar 

  23. Lethesh KC, Evjen S, Venkatraman V, Shah SN, Fiksdahl A (2020) Highly efficient cellulose dissolution by alkaline ionic liquids. Carbohydr Polym 229:115594

    Article  CAS  Google Scholar 

  24. Diez V, DeWeese A, Kalb RS, Blauch DN, Socha AM (2019) Cellulose dissolution and biomass pretreatment using quaternary ammonium ionic liquids prepared from H-, G-, and S-type lignin-derived benzaldehydes and dimethyl carbonate. Ind Eng Chem Res 58:16009–16017

    Article  CAS  Google Scholar 

  25. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  26. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  27. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  28. El Seoud OA, Kostag M, Jedvert K, Malek NI (2019) Cellulose in ionic liquids and alkaline solutions: advances in the mechanisms of biopolymer dissolution and regeneration. Polymers 11:1917

    Article  Google Scholar 

  29. Zhang L, Zhao D, Feng M, He B, Chen X, Wei L, Zhai S-R, An Q-D, Sun J (2019) Hydrogen bond promoted lignin solubilization and electrospinning in low cost protic ionic liquids. ACS Sustain Chem Eng 7:18593–18602

    Article  CAS  Google Scholar 

  30. Tan SS, MacFarlane DR, Upfal J, Edye LA, Doherty WO, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    Article  CAS  Google Scholar 

  31. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  32. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33

    Article  CAS  Google Scholar 

  33. Sun Y-C, Liu X-N, Wang T-T, Xue B-L, Sun R-C (2019) Green process for extraction of lignin by the microwave-assisted ionic liquid approach: toward biomass biorefinery and lignin characterization. ACS Sustain Chem Eng 7:13062–13072

    Article  CAS  Google Scholar 

  34. Shamshina JL (2019) Chitin in ionic liquids: historical insights into the polymer’s dissolution and isolation. A review. Green Chem 21:3974–3993

    Article  CAS  Google Scholar 

  35. Uto T, Idenoue S, Yamamoto K, Kadokawa JI (2018) Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. Phys Chem Chem Phys 20:20669–20677

    Article  CAS  Google Scholar 

  36. Walther P, Ota A, Müller A, Hermanutz F, Gähr F, Buchmeiser MR (2016) Chitin foils and coatings prepared from ionic liquids. Macromol Mater Eng 301:1337–1344

    Article  CAS  Google Scholar 

  37. Jaworska MM, Gorak A (2016) Modification of chitin particles with chloride ionic liquids. Mater Lett 164:341–343

    Article  CAS  Google Scholar 

  38. Zheng S, Nie Y, Zhang S, Zhang X, Wang L (2015) Highly efficient dissolution of wool keratin by dimethylphosphate ionic liquids. ACS Sustain Chem Eng 3:2925–2932

    Article  CAS  Google Scholar 

  39. Jaworska MM, Kozlecki T, Gorak A (2012) Review of the application of ionic liquids as solvents for chitin. J Polym Eng 32:67–69

    Article  CAS  Google Scholar 

  40. Wang W-T, Zhu J, Wang X-L, Huang Y, Wang Y-Z (2010) Dissolution behavior of chitin in ionic liquids. J Macromol Sci Part B 49:528–541

    Article  CAS  Google Scholar 

  41. Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J-I, Yamagata M, Ishikawa M (2009) An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  42. Prasad K, Murakami MA, Kaneko Y, Takada A, Nakamura Y, Kadokawa J (2009) Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide. Int J Biol Macromol 45:221–225

    Article  CAS  Google Scholar 

  43. Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49:2321–2327

    Article  CAS  Google Scholar 

  44. Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633

    Article  CAS  Google Scholar 

  45. Shimo M, Abe M, Ohno H (2016) Functional comparison of polar ionic liquids and onium hydroxides for chitin dissolution and deacetylation to chitosan. ACS Sustain Chem Eng 4:3722–3727

    Article  CAS  Google Scholar 

  46. Sharma M, Mukesh C, Mondal D, Prasad K (2013) Dissolution of α-chitin in deep eutectic solvents. RSC Adv 3:18149–18155

    Article  CAS  Google Scholar 

  47. Sun J, Konda NVSNM, Shi J, Parthasarathi R, Dutta T, Xu F, Scown CD, Simmons BA, Singh S (2016) CO2 enabled process integration for the production of cellulosic ethanol using bionic liquids. Energy Environ Sci 9:2822–2834

    Article  CAS  Google Scholar 

  48. Sun J, Konda NVSNM, Parthasarathi R, Dutta T, Valiev M, Xu F, Simmons BA, Singh S (2017) One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem 19:3152–3163

    Article  CAS  Google Scholar 

  49. Sun J, Dutta T, Parthasarathi R, Kim KH, Tolic N, Chu RK, Isern NG, Cort JR, Simmons BA, Singh S (2016) Rapid room temperature solubilization and depolymerization of polymeric lignin at high loadings. Green Chem 18:6012–6020

    Article  CAS  Google Scholar 

  50. Sun J, Yao X, Cheng W, Zhang S (2014) 1,3-Dimethylimidazolium-2-carboxylate: a zwitterionic salt for the efficient synthesis of vicinal diols from cyclic carbonates. Green Chem 16:3297–3304

    Article  CAS  Google Scholar 

  51. Sun J, Cheng W, Yang Z, Wang J, Xu T, Xin J, Zhang S (2014) Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem 16:3071–3078

    Article  CAS  Google Scholar 

  52. Romano P, Fabritius H, Raabe D (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 3:301–309

    Article  CAS  Google Scholar 

  53. Nikolov S, Petrov M, Lymperakis L, Friak M, Sachs C, Fabritius HO, Raabe D, Neugebauer J (2010) Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater 22:519–526

    Article  CAS  Google Scholar 

  54. Al-Sawalmih A, Li C, Siegel S, Fabritius H, Yi S, Raabe D, Fratzl P, Paris O (2008) Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv Funct Mater 18:3307–3314

    Article  CAS  Google Scholar 

  55. Hackman R (1955) Studies on chitin II. Reaction of N-acetyl-d-glucosamine with a-amino acids, peptides, and proteins. Aust J Biol Sci 8:83–96

    Article  CAS  Google Scholar 

  56. Stegemann H (1963) Protein (conchagen) and chitin in the supporting tissue of the cuttlefish. Hoppe Seylers Z Physiol Chem 331:269–279

    Article  CAS  Google Scholar 

  57. Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    Article  CAS  Google Scholar 

  58. Barber PS, Griggs CS, Gurau G, Liu Z, Li S, Li Z, Lu X, Zhang S, Rogers RD (2013) Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide. Angew Chem Int Ed Eng 52:12350–12353

    Article  CAS  Google Scholar 

  59. Barber PS, Griggs CS, Bonner JR, Rogers RD (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15:601–607

    Article  CAS  Google Scholar 

  60. Berton P, Shen X, Rogers RD, Shamshina JL (2019) 110th anniversary: high-molecular-weight chitin and cellulose hydrogels from biomass in ionic liquids without chemical crosslinking. Ind Eng Chem Res 58:19862–19876

    Article  CAS  Google Scholar 

  61. Setoguchi T, Kato T, Yamamoto K, Kadokawa J (2012) Facile production of chitin from crab shells using ionic liquid and citric acid. Int J Biol Macromol 50:861–864

    Article  CAS  Google Scholar 

  62. Tolesa LD, Gupta BS, Lee MJ (2019) Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. Int J Biol Macromol 130:818–826

    Article  CAS  Google Scholar 

  63. Bradić B, Novak U, Likozar B (2020) Crustacean shell bio-refining to chitin by natural deep eutectic solvents. Green Processes Synth 9:13–25

    Article  Google Scholar 

  64. Shamshina JL, Barber PS, Gurau G, Griggs CS, Rogers RD (2016) Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustain Chem Eng 4:6072–6081

    Article  CAS  Google Scholar 

  65. Zhu P, Gu Z, Hong S, Lian H (2017) One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent. Carbohydr Polym 177:217–223

    Article  CAS  Google Scholar 

  66. Saravana PS, Ho TC, Chae SJ, Cho YJ, Park JS, Lee HJ, Chun BS (2018) Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr Polym 195:622–630

    Article  CAS  Google Scholar 

  67. Huang WC, Zhao D, Guo N, Xue C, Mao X (2018) Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. J Agric Food Chem 66:11897–11901

    Article  CAS  Google Scholar 

  68. Feng M, Lu X, Wang L, Zhang J, Yang S, Shi C, Zhou Q, Zhang S (2019) Preparation of the catalytic chitin/Zn composite by combined ionic liquid–inorganic salt aqueous solution from shrimp shells. ACS Sustain Chem Eng 7:11990–11998

    CAS  Google Scholar 

  69. Zhao D, Huang WC, Guo N, Zhang S, Xue C, Mao X (2019) Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers (Basel) 11:409

    Article  Google Scholar 

  70. Mine S, Izawa H, Kaneko Y, Kadokawa J (2009) Acetylation of alpha-chitin in ionic liquids. Carbohydr Res 344:2263–2265

    Article  CAS  Google Scholar 

  71. Hirayama H, Yoshida J, Yamamoto K, Kadokawa JI (2018) Facile acylation of alpha-chitin in ionic liquid. Carbohydr Polym 200:567–571

    Article  CAS  Google Scholar 

  72. Hong S, Yuan Y, Yang Q, Chen L, Deng J, Chen W, Lian H, Mota-Morales JD, Liimatainen H (2019) Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. Carbohydr Polym 220:211–218

    Article  CAS  Google Scholar 

  73. Feng M, Lu X, Zhang J, Li Y, Shi C, Lu L, Zhang S (2019) Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chem 21:87–98

    Article  CAS  Google Scholar 

  74. Feng M, Lu X, Jiang K, Zhang J, Xin J, Shi C, Wang K, Zhang S (2018) One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using urea-Zn(OAc)2·2H2O aqueous solution. Green Chem 20:2212–2217

    Article  CAS  Google Scholar 

  75. Petkovic M, Ferguson JL, Gunaratne HN, Ferreira R, Leitao MC, Seddon KR, Rebelo LPN, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids – toxicity and biodegradability. Green Chem 12:643–649

    Article  CAS  Google Scholar 

  76. Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Acc Chem Res 40:1122–1129

    Article  CAS  Google Scholar 

  77. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127:2398–2399

    Article  CAS  Google Scholar 

  78. Gomes JM, Silva SS, Reis RL (2019) Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev 48:4317–4335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Feng, M., Sun, J. (2022). Pretreatment and Conversion of Shrimp/Crab Shells into High-Value Products with Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-33-4221-7_112

Download citation

Publish with us

Policies and ethics