Skip to main content

Ecological Intensification: A Step Towards Biodiversity Conservation and Management of Terrestrial Landscape

  • Chapter
  • First Online:
Ecological Intensification of Natural Resources for Sustainable Agriculture

Abstract

The current model of agricultural intensification has increased crop yields and profits for farmers. However, this increase takes place by significant loss of biodiversity as well as ecosystem services, which has become a global concern. In agricultural landscapes, biodiversity loss impairs the functionality of ecosystem in the form of pollination, natural pest control, habitat provision and water purification. In order to restore biodiversity along with maintaining agricultural production, there is need for farmers to switch to a novel farming approach that can optimize ecosystem functions and enhance crop yields. Reports reveal that ecological intensification has potential to ameliorate environmental externalities while preserving crop yields and profitability. To intensify ecological processes in agricultural landscapes, a potential strategy is to employ management practices that reduce or substitute synthetic agrochemical use, maintain or enhance landscape heterogeneity and connectivity. Intensification of eco-friendly nature may be achieved by wildlife-friendly approaches in the form of organic farming, conservation farming, agroforestry, integrated pest management and intercropping. However, lack of comprehensive information on the net benefits of ecological intensification farming practices is currently preventing widespread adoption by farmers. To increase uptake, it is critical that scientists address not only the ecological facets of biodiversity-friendly farming practices but also the economic and social facets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IPM:

Integrated Pest Management

GMOs:

Genetically Modified Organisms

NGO:

Nongovernmental Organization

SOM:

Soil Organic Matter

References

  • Acharya AK, Kafle N (2009) Land degradation issues in Nepal and its management through agroforestry. J Agric Environ 10:133–143. https://doi.org/10.3126/aej.v10i0.2138

    Article  Google Scholar 

  • Agbogidi OM, Adolor EB (2013) Home gardens in the maintenance of biological diversity. Appl Sci Reports 1:19–25

    Google Scholar 

  • Alam M, Olivier A, Paquette A, Dupras J, Revéret J, Messier C (2014) A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor Syst 88:679–691

    Article  Google Scholar 

  • Andersson GKS, Birkhofer K, Rundlöf M, Smith HG (2013) Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic Appl Ecol 14:540–546

    Article  Google Scholar 

  • Aude E, Tybirk K, Pedersen MB (2003) Vegetation diversity of conventional and organic hedgerows in Denmark. Agric Ecosyst Environ 99:135–147

    Article  Google Scholar 

  • Avery A (2006) The truth about organic foods. Henderson Communications LLC, Chesterfield, MO

    Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. CRC press, Boca Raton, FL, p 400. https://doi.org/10.1201/9780429276026

    Book  Google Scholar 

  • Bàrberi P (2002) Weed management in organic agriculture: are we addressing the right issues? Weed Res 42:176–193

    Article  Google Scholar 

  • Barrios E, Valencia V, Jonsson M, Brauman A, Hairiah K, Mortimer PE, Okubo S (2018) Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int J Biodiv Sci Ecosys Services Mgt 14:1–16. https://doi.org/10.1080/21513732.2017.1399167

    Article  Google Scholar 

  • Batary P, Dicks LV, Kleijn D, Sutherland WJ (2015) The role of Agri-environment schemes in conservation and environmental management. Conserv Biol 29:1006–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayala J, Kalinganire A, Sileshi GW, Tondoh JE (2018) Soil organic carbon and nitrogen in agroforestry systems in sub-Saharan Africa: a review. In: Bationo A, Ngaradoum D, Youl S, Lompo F, Fening J (eds) Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-58789-9_4

    Chapter  Google Scholar 

  • Beizhou S, Jie Z, Wiggins NL, Yuncong Y, Guangbo T, Xusheng S (2012) Intercropping with aromatic plants decreases herbivore abundance, species richness, and shifts arthropod community trophic structure. Environ Entomol 41:872–879

    Article  Google Scholar 

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci 110:11039–11043. https://doi.org/10.1073/pnas.1305618110

    Article  PubMed  PubMed Central  Google Scholar 

  • Bender SF, Van Der Heijden MGA (2014) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52:228–239

    Article  CAS  Google Scholar 

  • Bengtsson J (2015) Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol Entomol 40:45–55

    Article  Google Scholar 

  • Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–187

    Article  Google Scholar 

  • Birkhofer K, Smith HG, Weisser WW, Wolters V, Gossner MM (2015) Land-use effects on the functional distinctness of arthropod communities. Ecography 38:889–900. https://doi.org/10.1111/ecog.01141

    Article  Google Scholar 

  • Blanco-Canqui H, Shaver TM, Lindquist JL, Shapiro CA, Elmore RW, Francis CA, Hergert GW (2015) Cover crops and ecosystem services: insights from studies in temperate soils. Agron J 107:2449–2474. https://doi.org/10.2134/agronj15.0086

    Article  CAS  Google Scholar 

  • BLI (2008) State of the World’s birds: indicators for our changing world. Bird Life International, Cambridge, UK

    Google Scholar 

  • Boatman ND, Parry HR, Bishop JD, Cuthbertson AGS (2007) Impacts of agricultural change on farmland biodiversity in the UK. Issues in environmental science and technology, No. 25: biodiversity under threat. The Royal Society of Chemistry

    Google Scholar 

  • Boffa JM (1999) Agroforestry parklands in sub-Saharan Africa. FAO conservation guide 34. Food and agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Borin M, Passoni M, Thiene M, Tempesta T (2010) Multiple functions of buffer strips in farming areas. Eur J Agron 32:103–111. https://doi.org/10.1016/j.eja.2009.05.003

    Article  Google Scholar 

  • Boudreau MA (2013) Diseases in intercropping systems. Annu Rev Phytopathol 5:499–519

    Article  CAS  Google Scholar 

  • Branca G, Lipper L, McCarthy N, Jolejole MC (2013) Food security, climate change, and sustainable land management. A review. Agron Sustain Dev 33:635–650

    Article  Google Scholar 

  • Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob Change Biol 23:4396–4419

    Article  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schob C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Hallett improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117. https://doi.org/10.1111/nph.13132

    Article  PubMed  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3:119–129. https://doi.org/10.1016/j.iswcr.2015.05.002

    Article  Google Scholar 

  • Bybee-Finley KA, Ryan MR (2018) Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture 8:80

    Article  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarino R, Ceddia G, Areal FJ, Park J (2015) The impact of secondary pests on Bacillus thuringiensis (Bt) crops. Plant Biotec J 13:601–612. https://doi.org/10.1111/pbi.12363

    Article  CAS  Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119. https://doi.org/10.1007/s11356-014-3277-x

    Article  CAS  Google Scholar 

  • Cooper J, Baranski M, Stewart G, Nobel-de Lange M, Bàrberi P, Andreas Fließbach A, Peigne J, Berner A, Brock C, Casagrande M, Crowley O, David C, De Vliegher A, Doring TF, Dupont A, Entz M, Grosse M, Haase T, Halde C, Hammerl V, Huiting H, Leithold G, Messmer M, Schloter M, Sukkel W, van der Heijden MGA, Willekens K, Wittwer R, Mader P (2016) Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agron Sustain Dev 36:22. https://doi.org/10.1007/s13593-016-0354-1

    Article  CAS  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Mgt Sci 56:651–676

    Article  CAS  Google Scholar 

  • Corsi S, Friedrich T, Kassam A, Pisante M, de Moraes Sà JC (2012) Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review, vol 16. AGP/FAO, Rome

    Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

    Article  Google Scholar 

  • Cui Z, Zhang H, Chen X, Zhang C, Wenqi M, Huang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, Peng X, Ren J, Li S, Deng X, Shi X, Zhang Q, Yang Z, Tang L, Wei C, Jia L, Zhang J, He M, Tong Y, Tang Q, Zhong X, Liu Z, Cao N, Kou C, Ying H, Yin Y, Jiao X, Zhang Q, Fan M, Jiang R, Zhang F, Dou Z (2018) Pursuing sustainable productivity with millions of smallholder farmers. Nature 555:363–366. https://doi.org/10.1038/nature25785

    Article  CAS  PubMed  Google Scholar 

  • de Molina MG, Casado GIG (2017) Agroecology and ecological intensification. A discussion from a metabolic point of view. Sustainability 9:86. https://doi.org/10.3390/su9010086

    Article  Google Scholar 

  • Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C (2014) Large-scale trade-off between agricultural intensification and crop pollination services. Front Ecol Environ 12:212–217. https://doi.org/10.1890/130054

    Article  Google Scholar 

  • Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196

    Article  Google Scholar 

  • Earnshaw S (2018) Hedgerows and farmscaping for California agriculture, a resource guide for farmers. Community alliance with family farmers. www.caff.org. Accessed 10 Mar 2020

  • Egan JF, Bohnenblust E, Goslee S, Mortensen D, Tooker J (2014) Herbicide drift can affect plant and arthropod communities. Agric Ecosyst Environ 185:77–87

    Article  CAS  Google Scholar 

  • Emmerson M, Morales MB, Onate JJ, Batáry P, Berendse F, Liira J, Aavik T, Guerrero I, Bommarco R, Eggers S, Part T, Tscharntke T, Weisser W, Clement L, Bengtsson J (2016) How agricultural intensification affects biodiversity and ecosystem services. Adv Ecol Res 55:43–97. https://doi.org/10.1016/bs.aecr.2016.08.005

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  • FAO (2015) World fertilizer trends and outlooks to 2018. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Finch S, Collier RH (2012) The influence of host and non-host companion plants on the behaviour of pest insects in field crops. Entomol Exp Appl 142:87–96

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  CAS  PubMed  Google Scholar 

  • Fuller RJ, Norton LR, Feber RE, Johnson PJ, Chamberlain DE, Joys AC, Mathews F, Stuart RC, Townsend MC, Manley WJ, Wolfe MS, Macdonald DW, Firbank LG (2005) Benefits of organic farming to biodiversity vary among taxa. Biol Lett 1:431–434. https://doi.org/10.1098/rsbl.2005.0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel D, Roschewitz I, Tscharntke T, Thies C (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecol Appl 16:2011–2021

    Article  PubMed  Google Scholar 

  • Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654. https://doi.org/10.1007/s10531-010-9919-5

    Article  Google Scholar 

  • Garbach K, Milder JC, Montenegro M, Karp DS, DeClerck FAJ (2014) Biodiversity and ecosystem services in agroecosystems. Reference module in food science. Encycl Agric Food Syst 2:21–40. https://doi.org/10.1016/B978-0-444-52512-3.00013-9

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhöffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyörgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x

    Article  PubMed  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Vaissière B, Gemmill-Herren B, Hipolito J, Freitas BM, Ngo HT, Azzu N, Saez A, Astrom J, An J, Blochtein B, Buchori D, Garcia FJC, da Silva FO, Devkota K, de Fatima RM, Freita L, Gaglianone MC, Goss M, Irshad M, Kasina M, Filho AJSP, Kiill LHP, Kwapong P, Parra GN, Pires C, Pires V, Rawal RS, Rizali A, Saraiva AM, Veldtman R, Viana BF, Witter S, Zhang H (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388–391. https://doi.org/10.1126/science.aac7287

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi LA, Mendez NP, Garratt MPD, Gemmill-Heren B, Miguez FE, Dicks LV (2019) Policies for ecological intensification of crop production. Tends Ecol Evol 34(4):282–286

    Article  Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mader P, Stolze M, Smith P, El-Hage Scialabba N, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci U S A 109(44):18226–18231. https://doi.org/10.1073/pnas.1209429109

    Article  PubMed  PubMed Central  Google Scholar 

  • Gbedomon RC, Salako VK, Fandohan AB, Idohou AFR, KakaÑ— RG, Assogbadjo AE (2017) Functional diversity of home gardens and their agrobiodiversity conservation benefits in Benin, West Africa. J Ethnobiol Ethnomed 13:66. https://doi.org/10.1186/s13002-017-0192-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiger F, Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. https://doi.org/10.1016/j.baae.2009.12.001

    Article  CAS  Google Scholar 

  • Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical Rev Plant Sci 30:95–124. https://doi.org/10.1080/07352689.2011.554355

    Article  Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S, Hsieh HY, Iverson AL, Batáry P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281(1791):1358. https://doi.org/10.1098/rspb.2014.1358

    Article  Google Scholar 

  • Guenat S, Kaartinen R, Jonsson M (2019) Shade trees decrease pest abundances on brassica crops in Kenya. Agrofor Syst 93:641–652. https://doi.org/10.1007/s10457-017-0159-5

    Article  Google Scholar 

  • Hannon LE, Sisk TD (2009) Hedgerows in an Agri-natural landscape: potential habitat value for native bees. Biol Conserv 142:2140–2154. https://doi.org/10.1016/j.biocon.2009.04.014

    Article  Google Scholar 

  • Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM (2008) Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans Royal Soc London 363:611–621

    Article  Google Scholar 

  • Hill D, Webster T (1995) Apiculture and forestry (bees and trees). Agrofor Syst 29:313–320

    Article  Google Scholar 

  • HLPE (High Level Panel of Experts on Food Security and Nutrition) (2017) Sustainable forestry for food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Food and Agriculture Organization on the United Nations (FAO), Rome

    Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363:543–555

    Article  Google Scholar 

  • Hodgson JA, Kunin WE, Thomas CD, Benton TG, Gabriel D (2010) Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale. Ecol Lett 13:1358–1367. https://doi.org/10.1111/j.1461-0248.2010.01528.x

    Article  PubMed  Google Scholar 

  • Hokkanen H (2015) Integrated pest management at the crossroads: science, politics, or business (as usual)? Arthropod Plant Interact 9:543–545

    Article  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–120

    Article  Google Scholar 

  • Holland JM, Douma JC, Crowley L, James L, Kor L, Stevenson DRW, Smith BM (2017) Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron Sustain Dev 37:31. https://doi.org/10.1007/s13593-017-0434-x

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361

    Article  Google Scholar 

  • IFOAM (International Movement of Organic Agriculture Movements) (2008) The world of organic agriculture - statistics and emerging trends 2008. International Federation of Organic Agriculture Movements-IFOAM, Bonn, Germany

    Google Scholar 

  • Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C (2017) Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 105:871–879. https://doi.org/10.1111/1365-2745.12789

    Article  Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech, Croatia, UK, pp 237–257. https://doi.org/10.5772/60841

    Chapter  Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, Cham, pp 315–345. https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. CRC press, Boca Raton, FL, p 335. https://doi.org/10.1201/9780429057274

    Book  Google Scholar 

  • Jiang X, Wright AL, Wang X, Liang F (2011) Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: a long-term field study in a subtropical rice soil in China. Appl Soil Ecol 48:168–173. https://doi.org/10.1016/j.apsoil.2011.03.009

    Article  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85:1–8

    Article  Google Scholar 

  • Kamau S, Barrios E, Karanja N, Ayuke F, Lehmann J (2017) Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol Biochem 112:35–46

    Article  CAS  Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvalheiro LG, Chacoff NP, Cunningham SA, Danforth BN, Dudenhoffer JH, Elle E, Gaines HR, Garibaldi LA, Gratton C, Holzschuh A, Isaacs R, Javorek SK, Jha S, Klein AM, Krewenka K, Mandelik Y, Mayfield MM, Morandin L, Neame LA, Otieno M, Park M, Potts SG, Rundlof M, Saez A, Steffan-Dewenter I, Taki H, Viana BF, Westphal C, Wilson JK, Greenleaf SS, Kremen C (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. https://doi.org/10.1111/ele.12082

    Article  PubMed  Google Scholar 

  • Khan ML, Arunachalam A (2003) Traditional agroforestry as a viable choice to conserve agro-biodiversity in the Northeast India. In: Pathak PS, Newaj R (eds) Agroforestry: potentials and opportunities. Agrobios (India) and Indian Society of Agroforestry, Jodhpur, India, pp 95–105

    Google Scholar 

  • Khan Z, Midega C, Pittchar J, Pickett J, Bruce T (2011) Push-pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int J Agric Sustain 9:162–170

    Article  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Kibria G, Haroon AKY, Nugegoda D (2013) Climate change and agricultural food production: impacts, vulnerabilities and remedies. New India Publishing Agency, New Delhi. https://doi.org/10.13140/2.1.3245.4081

    Book  Google Scholar 

  • Kim DG, Kirschbaum MUF, Beedy TL (2016) Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agric Ecosyst Environ 226:65–78. https://doi.org/10.1016/j.agee.2016.04.011

    Article  CAS  Google Scholar 

  • Kjaer C, Bruus M, Bossi R, Løfstrøm P, Andersen HV, Nuyttens D, Larsen SE (2014) Pesticide drift deposition in hedgerows from multiple spray swaths. J Pesticide Sci 39:14–21. https://doi.org/10.1584/jpestics.D12-045

    Article  Google Scholar 

  • Kleijn D, Bommarco R, Fijen TPM, Garibaldi LA, Potts SG, van der Putten WH (2018) Ecological intensification: bridging the gap between science and practice. Trends Ecol Evol 34:154–166. https://doi.org/10.1016/j.tree.2018.11.002

    Article  PubMed  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Royal Soc B: Biol Sci 274:303–313

    Article  Google Scholar 

  • Knapp S, van der Heijden MGA (2018) A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun 9:3632. https://doi.org/10.1038/s41467-018-05956-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács-Hostyánszki A, Espíndola A, Vanbergen AJ, Settele J, Kremen C, Dicks LV (2017) Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol Lett 20:673–689. https://doi.org/10.1111/ele.12762

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar BM, Nair PKR (2004) The enigma of tropical homegardens. Agrofor Syst 61:135–152

    Google Scholar 

  • Kumar S, Meena RS, Jhariya MK (2020) Resources use efficiency in agriculture. Springer, Singapore, p 760. https://doi.org/10.1007/978-981-15-6953-1

    Book  Google Scholar 

  • Kuyah S, Oborn I, Jonsson M, Dahlin AS, Barrios E, Muthuri C, Malmer A, Nyaga J, Magaju C, Namirembe S, Nyberg Y, Sinclair FL (2016) Trees in agricultural landscapes enhance provision of ecosystem services in sub-Saharan Africa. Int J Biodivers Sci Ecosys Services Mgt 12:255–273. https://doi.org/10.1080/21513732.2016.1214178

    Article  Google Scholar 

  • Landis DA (2017) Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Appl Ecol 18:1–12

    Article  Google Scholar 

  • Légère A, Stevenson F, Benoit D (2011) The selective memory of weed seedbanks after 18 years of conservation tillage. Weed Sci 59:98–106

    Article  CAS  Google Scholar 

  • Letourneau DK, Armbrecht I, Rivera BS, Lerma MJ, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutierrez C, Lopez SD, Mejia JL, Rangel AMA, Rangel JH, Rivera L, Saavedra CA, Torres AM, Trujillo AR (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21(1):9–21. https://doi.org/10.1890/09-2026.1

    Article  PubMed  Google Scholar 

  • Macleod A, Wratten SD, Sotherton N, Thomas MB (2004) Beetle banks’ as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric Entomol 6:147–154. https://doi.org/10.1111/j.1461-9563.2004.00215.x

    Article  Google Scholar 

  • Mäder P, Berner A (2012) Development of reduced tillage systems in organic farming in Europe. Renewable Agric Food Syst 27:7–11. https://doi.org/10.1017/s1742170511000470

    Article  Google Scholar 

  • Martín-López B, Llorente MG, Palomo I, Montes C (2011) The conservation against development paradigm in protected areas: valuation of ecosystem services in the Doñana social-ecological system (southwestern Spain). Ecol Econ 70:1481–1491. https://doi.org/10.1016/j.ecolecon.2011.03.009

    Article  Google Scholar 

  • Matson PA, Parton WIJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. https://doi.org/10.1126/science.277.5325.504

    Article  CAS  PubMed  Google Scholar 

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opinion Environ Sustain 6:8–14

    Article  Google Scholar 

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570

    Article  CAS  PubMed  Google Scholar 

  • McNeely J, Schroth G (2006) Agroforestry and biodiversity conservation –traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554. https://doi.org/10.1007/s10531-005-2087-3

    Article  Google Scholar 

  • Medan D, Torretta JP, Hodara K, de la Fuente EB, Montaldo NH (2011) Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the pampas of Argentina. Biodivers Conserv 20:3077–3100. https://doi.org/10.1007/s10531-011-0118-9

    Article  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541. https://doi.org/10.1007/978-981-13-0253-4_10

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land (MDPI) 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Michon G, de Foresta H (1995) The Indonesian agroforest model: Forest resource management and biodiversity conservation. In: Halliday P, Gilmour DA (eds) Conserving biodiversity outside protected areas: the role of traditional agro-ecosystems. IUCN, Gland, Switzerland

    Google Scholar 

  • Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification. PLoS one 8:e57457. https://doi.org/10.1371/journal.pone.0057457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5:81–96

    Article  CAS  Google Scholar 

  • Mlambo D, Nyathi P, Mapaure I (2005) Influence of Colophospermum mopane on surface soil properties and understorey vegetation in southern African savanna. For Ecol Mgt 212:394–404

    Article  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127. https://doi.org/10.1371/journal.pbio.1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morandin LA, Kremen C (2013) Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol Appl 23:829–839

    Article  PubMed  Google Scholar 

  • Morris NL, Miller PCH, Orson JH, Froud-Williams RJ (2010) The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – a review. Soil Tillage Res 108:1–15

    Article  Google Scholar 

  • Norton L, Johnson P, Joys A, Stuart R, Chamberlain D, Feber R (2009) Consequences of organic and non-organic farming practices for field: farm and landscape complexity. Agric Ecosyst Environ 129:221–227

    Article  Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583. https://doi.org/10.1007/s00442-003-1458-2

    Article  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Pannell DJ (2003) Uncertainty and adoption of sustainable farming systems. In: Babcock BA, Fraser RW, Lekakis JN (eds) Risk management and the environment: agriculture in perspective. pp 67–81. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2915-4_5

  • Pardon P, Reubens B, Reheul D, Mertens J, DeFrenne P, Coussement T, Janssens P, Verheyen K (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric Ecosyst Environ 247:98–111. https://doi.org/10.1016/j.agee.2017.06.018

    Article  CAS  Google Scholar 

  • Parsa S, Morse S, Bonifacio A, Chancellor TCB, Condori B, Crespo-Perez V, Hobbs SLA, Kroschel J, Ba MN, Rebaudo F, Sherwood SG, Vanek SJ, Faye E, Herrera MA, Dangles O (2014) Obstacles to integrated pest management adoption in developing countries. Proc Natl Acad Sci U S A 111(10):3889–3894. https://doi.org/10.1073/pnas.1312693111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philips CR, Rogers MA, Kuhar TP (2014) Understanding farmscapes and their potential for improving IPM programs. J Integ Pest Mgt 5(3):C1–C9. https://doi.org/10.1603/IPM13018

    Article  Google Scholar 

  • Pickett JA (2013) Food security: intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food Energy Secur 2:167–173. https://doi.org/10.1002/fes3.32

    Article  Google Scholar 

  • Pickett JA, Woodcock CM, Midega CAO, Khan ZR (2014) Push-pull farming system. Curr Opion Biotech 26:125–132. https://doi.org/10.1016/j.copbio.2013.12.006

    Article  CAS  Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, Groenigen KJV, Lee J, Lundy ME, Gestel NV, Six J, Venterea RT, Kessel CV (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368. https://doi.org/10.1038/nature13809

    Article  CAS  PubMed  Google Scholar 

  • Ponisio L, M’Gonigle L, Mace K, Palomino J, de Valpine P, Kremen C (2015) Diversification practices reduce organic to conventional yield gap. Proc Roy Soc B Biol Sci 282:20141396. https://doi.org/10.1098/rspb.2014.1396

    Article  Google Scholar 

  • Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Apicultural Res 49:15–22. https://doi.org/10.3896/IBRA.1.49.1.02

    Article  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond Ser B Biol Sci 365:2959–2971

    Article  Google Scholar 

  • Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Science 362:6417. https://doi.org/10.1126/science.aav0294

    Article  CAS  Google Scholar 

  • Pretty J, Bharucha ZP (2015) Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6:152–182. https://doi.org/10.3390/insects6010152

    Article  PubMed  PubMed Central  Google Scholar 

  • Puerta VL, Pereira EIP, Wittwer R, van der Heijden M, Six J (2018) Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res 180:1–9. https://doi.org/10.1016/j.still.2018.02.007

    Article  Google Scholar 

  • Pumariño L, Sileshi GW, Gripenberg S, Kaartinen R, Barrios E, Muchane MN, Midega C, Jonsson M (2015) Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic Appl Ecol 16(7):573–582. https://doi.org/10.1016/j.baae.2015.08.006

    Article  Google Scholar 

  • Railsback SF, Johnson MD (2014) Effects of land use on bird populations and pest control services on coffee farms. PNAS 111:6109–6114. https://doi.org/10.1073/pnas.1320957111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019a) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 101–131. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019b) Soil for sustainable environment and ecosystems management. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 189–221. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. CRC Press, Boca Raton, FL, p 383. https://doi.org/10.1201/9780429286759

    Book  Google Scholar 

  • Redlich S, Martin EA, Wende B, Steffan-Dewenter I (2018) Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS One 13(8):e0200438. https://doi.org/10.1371/journal.pone.0200438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Potts SG, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515. https://doi.org/10.1111/j.1461-0248.2008.01157.x

    Article  PubMed  Google Scholar 

  • Roger-Estrade J, Anger C, Bertrand M, Richard G (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res 111:33–40. https://doi.org/10.1016/j.still.2010.08.010

    Article  Google Scholar 

  • Röös E, Mie A, Wivstad M, Salomon E, Johansson B, Gunnarsson S, Wallenbeck A, Hoffmann R, Nilsson U, Sundberg C, Watson CA (2018) Opportunities of increasing yields in organic farming. A review. Agron Sustain Dev 38:14. https://doi.org/10.1007/s13593-018-0489-3

    Article  CAS  Google Scholar 

  • Rundlöf M, Edlund M, Smith HG (2010) Organic farming at local and landscape scales benefits plant diversity. Ecography 33:514–522

    Google Scholar 

  • Rundlöf M, Smith HG, Birkhofer K (2016) Effects of organic farming on biodiversity. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0026342

    Chapter  Google Scholar 

  • Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  • Santangeli A, Lehikoinen A, Lindholm T, Herzon I (2019) Organic animal farms increase farmland bird abundance in the boreal region. PLoS One 14(5):e0216009. https://doi.org/10.1371/journal.pone.0216009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiñas HS, Kremen C (2015) Pollination services from field-scale agricultural diversification may be context-dependent. Agric Ecosyst Environ 207:17–25

    Article  Google Scholar 

  • Schneider MK, Luscher G, Jeanneret P, Arndorfer M, Ammari Y, Bailey D, Balazs K, Baldi A, Choisis JP, Dennis P, Eiter S, Fjellstad W, Fraser MD, Frank T, Friedel JK, Garchi S, Geijzendorffer IR, Gomiero T, Gonzalez-Bornay G, Hector A, Jerkovich G, Jongman RHG, Kakudidi E, Kainz M, Kovacs-Hostyanszki A, Moreno G, Nkwiine C, Opio J, Oschatz ML, Paoletti MG, Pointereau P, Pulido FJ, Sarthou JP, Siebrecht N, Sommaggio D, Turnbull LA, Wolfrum S, Herzog F (2014) Gains to species diversity in organically farmed fields are not propagated to the farm level. Nat Commun 5:4151. https://doi.org/10.1038/ncomms5151

    Article  CAS  PubMed  Google Scholar 

  • Schoonhoven Y, Runhaar H (2018) Conditions for the adoption of agro-ecological farming practices: a holistic framework illustrated with the case of almond farming in Andalusia. Int J Agric Sustain 16:442–454. https://doi.org/10.1080/14735903.20181537664

    Article  Google Scholar 

  • Schroth G, Harvey CA, Vincent G (2004) Complex agroforests: their structure, diversity and potential role in landscape conservation. Chapter 10. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, pp 227–260

    Google Scholar 

  • Scudder GGE (2009) The importance of insects. In: Insect biodiversity: science and society. Blackwell Publishing, Hoboken, NJ

    Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232

    Article  CAS  PubMed  Google Scholar 

  • Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG, Biesmeijer JC, Sait SM (2013) Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol Rev 88:1002–1021. https://doi.org/10.1111/brv.12040

    Article  PubMed  Google Scholar 

  • Silva EM (2014) Screening five fall-sown cover crops for use in organic no-till crop production in the upper Midwest. Agroecol Sustain Food Sys 38:748–763

    Article  Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and Agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, India, pp 125–145

    Google Scholar 

  • Smith RG, Gross KL, Robertson GP (2008) Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11:355–366

    Article  Google Scholar 

  • Smith HG, Dänhardt J, Lindström A, Rundlöf M (2010) Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds. Oecologia 162:1071–1079

    Article  PubMed  Google Scholar 

  • Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and South-Western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res 118:66–87. https://doi.org/10.1016/j.still.2011.10.015

    Article  Google Scholar 

  • Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc Biol Sci 279:1421–1429. https://doi.org/10.1098/rspb.2011.1686

    Article  CAS  PubMed  Google Scholar 

  • Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L (2016) Conservation tillage mitigates the negative effect of landscape simplification on biological control. J Appl Ecol 53:233e241

    Article  Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41:526–538

    Article  Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771. https://doi.org/10.1111/ele.12453

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. https://doi.org/10.1038/nature01014

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traba J, Morales MB (2019) The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci Rep 9:9473. https://doi.org/10.1038/s41598-019-45854-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas A (2001) Urban myths of organic farming. Nature 410:409–410. https://doi.org/10.1038/35068639

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (2002) Malthus foiled again and again. Nature 418:668–670

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Holscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes-a review. J Appl Ecol 48(3):619–629

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Tuck SL, Winqvist C, Mota F, Ahnstreom J, Turnbull LA, Bengtsson J (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51:746–755. https://doi.org/10.1111/1365-2664.12219

    Article  PubMed  PubMed Central  Google Scholar 

  • Venter ZS, Jacobs K, Hawkins HJ (2016) The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59:215–223. https://doi.org/10.1016/j.pedobi.2016.04.001

    Article  Google Scholar 

  • Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  PubMed  Google Scholar 

  • Verret V, Gardarin A, Pelzer E, Médiène S, Makowski D, Valantin-Morison M (2017) Can legume companion plants control weeds without decreasing crop yield? a meta-analysis. Field Crops Res 204:158–168

    Article  Google Scholar 

  • Vongvisouk T, Broegaard RB, Mertz O, Thongmanivong S (2016) Rush for cash crops and forest protection: neither land sparing nor land sharing. Landuse Policy 55:82–192. https://doi.org/10.1016/j.landusepol.2016.04.001

    Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijdena MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 14:5266–5270

    Article  CAS  Google Scholar 

  • Wang Z, Liu L, Chen Q, Wen X, Liao Y (2016) Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron Sustain Dev 36:28. https://doi.org/10.1007/s13593-016-0366-x

    Article  Google Scholar 

  • Wickramasinghe LP, Harris S, Jones G, Vaughan N (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Appl Ecol 40:984–993

    Article  Google Scholar 

  • Winfree R, Fox JW, Williams N, Reilly J, Cariveau D (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635

    Article  PubMed  Google Scholar 

  • Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579. https://doi.org/10.1111/j.1365-2664.2010.01950.x

    Article  Google Scholar 

  • Xu Q, Hatt S, Lopes T, Zhang Y, Bodson B, Chen J, Francis F (2017) A push–pull strategy to control aphids combines intercropping with semiochemical releases. J Pest Sci 91:93–103. https://doi.org/10.1007/s10340-017-0888-2

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zikeli S, Gruber S (2017) Reduced tillage and no-till in organic farming systems, Germany-status quo, potentials and challenges. Agriculture 7:35. https://doi.org/10.3390/agriculture7040035

    Article  Google Scholar 

  • Zuazo VHD, Pleguezuelo CR (2008) Soil-Erosion and runoff prevention by plant covers: a review. Agronomy Sustain Dev 28(1):65–86. https://doi.org/10.1051/agro:2007062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mlambo, D. (2021). Ecological Intensification: A Step Towards Biodiversity Conservation and Management of Terrestrial Landscape. In: Jhariya, M.K., Meena, R.S., Banerjee, A. (eds) Ecological Intensification of Natural Resources for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-33-4203-3_3

Download citation

Publish with us

Policies and ethics