Skip to main content

Basics of Power Systems Analysis

  • Chapter
Springer Handbook of Power Systems

Abstract

This chapter provides the background required to understand the main aspects of power systems analysis and operation under steady-state and transient or dynamic conditions. It is intended for senior undergraduate or graduate students of electrical engineering as well as practitioners, so readers are assumed to have a solid background knowledge of electrical engineering.

The main technical issues associated with power systems analysis are addressed, focusing in particular on alternating current () transmission lines, networks, load-flow and short-circuit calculations, stability analysis, frequency control, and electromagnetic transient appraisal. The chapter also references the most important and popular model frameworks and calculation/modeling tools that have been developed by researchers and engineers working within the electric power systems area in the last few decades. It is emphasized in this chapter that an understanding of the issues dealt with here is required to comprehend other chapters of this handbook devoted to distributed generation and smart grids, and this knowledge will also be needed to be able to operate upcoming power systems.

The chapter is divided into sections focusing on the following topics:

  1. 1.

    Power systems evolution, from the origins to the traditional structure

  2. 2.

    Transmission lines in steady state, transmitted active and reactive power

  3. 3.

    Power flow analysis (load-flow equations and resolution methods)

  4. 4.

    Short-circuit calculations for unbalanced faults (symmetrical components, fault equations, and sequence networks)

  5. 5.

    Stability (states of operation, classification, P-delta curves, rotor angle stability, equal area criterion, multi-machine stabilty and voltage stability)

  6. 6.

    Generators reserve and dynamics, frequency dependence of the load, control structure for frequency control

  7. 7.

    Traveling waves in a lossless line, reflection and transmission coefficients, multiple reflections in a line of fine length; electromagnetic transients (classification of transients, )

  8. 8.

    Power systems in the future (why we need a smart(er) grid, microgrids and energy communities)

Additional information and supplementary exercises for this chapter are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E.W. Kimbark: Synchronous Machines, Power System Stability, Vol. 3 (Wiley, New York 1956)

    Google Scholar 

  • D. Zanobetti, M. Pezzi: Lezioni di impianti elettrici (Clueb, Bologna 1981)

    Google Scholar 

  • F. Iliceto: Impianti elettrici (Pàtron, Bologna 1984)

    Google Scholar 

  • R. Marin, M. Valtorta: Trasmissione e interconnessione (CEDAM, Padavo 1973)

    Google Scholar 

  • P. Kundur: Power System Stability and Control (McGraw-Hill, New York 1994)

    Google Scholar 

  • J. Grainger, W. Stevenson: Power System Analysis (McGraw-Hill, New York 1994)

    Google Scholar 

  • J.P. Barret, P. Bornard, B. Meyer: Power System Simulation (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  • H.W. Dommel: EMTP Theory Book, 2nd edn. ((Microtran Power System Analysis Corporation, Vancouver 1996)

    Google Scholar 

  • F. Saccomanno: Electric Power Systems Analysis and Control (Wiley, New York 2003)

    Book  Google Scholar 

  • R. Marconato: Steady State Behavior Controls, Short Circuits and Protection Systems, Vols. 1 and 2 (CEI, Milano 2004)

    Google Scholar 

  • J. Machowski, J.W. Bialek, J.R. Bumby: Power System Dynamics: Stability and Control (Wiley, New York 2008)

    Google Scholar 

  • H. Saadat: Power System Analysis, 3rd edn. (McGraw-Hill, New York 2010)

    Google Scholar 

  • A.J. Wood, B.F. Wollenberg, G.B. Sheblé: Power Generation, Operation, and Control, 3rd edn. (Wiley, Hoboken 2013)

    Google Scholar 

  • J.D. Glover, M.S. Sarma, T.J. Overbye: Power System Analysis and Design (Cengage Learning, London 2012)

    Google Scholar 

  • A. Gómez Expósito, A.J. Conejo, C. Cañizares: Electric Energy Systems: Analysis and Operation, 2nd edn. (CRC, Boca Raton 2018)

    Google Scholar 

  • B.J. Cory, N. Jenkins, J. Ekanayake, G. Strbac, B.M. Weedy: Electric Power Systems (Wiley, Hoboken 2013)

    Google Scholar 

  • F. Milano: Power System Modelling and Scripting (Springer, Heidelberg, Berlin 2013)

    Google Scholar 

  • N. Mohan: Electric Power Systems: A First Course (Wiley, Hoboken 2012)

    Google Scholar 

  • L.L. Grigsby: The Electric Power Engineering Handbook (CRC, Boca Raton 2012)

    Google Scholar 

  • D.P. Kothari, I.J. Nagrath: Modern Power System Analysis (Tata McGraw-Hill, New Delhi 2011)

    Google Scholar 

  • M.D. Ilic, J. Zaborszky: Dynamics and Control of Large Electric Power Systems (Wiley, New York 2000)

    Google Scholar 

  • A.K. Singh, B.C. Pal: Dynamic Estimation and Control of Power Systems (Elsevier, Amsterdam 2018)

    Google Scholar 

  • P.M. Anderson: Power System Protection (McGraw-Hill, New York 1999)

    Google Scholar 

  • V. Vittal, J.D. McCalley, P.M. Anderson, A.A. Fouad: Power System Control and Stability, 3rd edn. (Wiley-IEEE, Hoboken 2020)

    Google Scholar 

  • P.W. Sauer, M.A. Pai, J.H. Chow: Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox, 2nd edn. (Wiley-IEEE, Hoboken 2018)

    Google Scholar 

  • M. Eremia, M. Shahidehpour: Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control (Wiley, Hoboken 2013)

    Book  Google Scholar 

  • A. Ametani, N. Nagaoka, Y. Baba, T. Ohno, K. Yamabuki: Power System Transients: Theory and Applications, 2nd edn. (CRC, Boca Raton 2016)

    Book  Google Scholar 

  • A. Greenwood: Electrical Transients in Power Systems, 2nd edn. (Wiley, New Delhi 1991)

    Google Scholar 

  • M. Ceraolo, D. Poli: Fundamentals of Electric Power Engineering: From Electromagnetics to Power Systems (Wiley, Hoboken 2014)

    Book  Google Scholar 

  • J.C. Das: Power System Analysis: Short-Circuit Load Flow and Harmonics, 2nd edn. (CRC, Bosa Roca 2012)

    Google Scholar 

  • M.L. Crow: Computational Methods for Electric Power Systems, 3rd edn. (CRC, Boca Raton 2015)

    Book  Google Scholar 

  • A.A. Sallam, O.P. Malik: Power System Stability: Modelling, Analysis and Control (IET, London 2015)

    Book  Google Scholar 

  • C. Sulzberger: Pearl Street in miniature: Models of the electric generating station, IEEE Power Energy Mag. 11(2), 76–85 (2013)

    Article  Google Scholar 

  • The Edison Electric Lighting Station, Sci. Am. 47(9), 127–130 (1882)

    Google Scholar 

  • L. de Andrade, T.P. de Leao: A brief history of direct current in electrical power systems. In: Third IEEE Hist. Electro-Technol. Conf. (HISTELCON) (2012) pp. 1–6

    Google Scholar 

  • A. Paolucci: Lezioni di trasmissione dell’energia elettrica (Cleup, Padova 1990)

    Google Scholar 

  • J.B. Ward, H.W. Hale: Digital computer solution of power-flow problems, Trans. Am. Inst. Electr. Eng. 75(3), 398–404 (1956)

    Google Scholar 

  • J.E. Van Ness: Iteration methods for digital load flow studies, Trans. Am. Inst. Electr. Eng. 78(3), 583–586 (1959)

    Google Scholar 

  • H.W. Hale, R.W. Goodrich: Digital computation of power flow – Some new aspects, Trans. Am. Inst. Electr. Eng. 78(3), 919–923 (1959)

    Google Scholar 

  • J. Carpentier: Optimal power flows, Int. J. Electr. Power Energy Syst. 1(1), 3–15 (1979)

    Article  Google Scholar 

  • B. Stott: Decoupled Newton load flow, IEEE Trans. Power Appar. Syst. 91(5), 1955–1959 (1972)

    Article  Google Scholar 

  • B. Stott, O. Alsac: Fast decoupled load flow, IEEE Trans. Power Appar. Syst. 93(3), 859–869 (1974)

    Article  Google Scholar 

  • R. Marconato: Steady State Behavior Controls, Short Circuits and Protection Systems, Electric Power Systems, Vol. 2 (CEI, Milano 2004)

    Google Scholar 

  • V. Cataliotti: Impianti Elettrici, Vol. 1 (Flaccovio, Palermo 2008)

    Google Scholar 

  • J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian, L. Gérin-Lajoie: On a new approach for the simulation of transients in power systems, Electr. Power Syst. Res. 77(11), 1514–1520 (2007)

    Article  Google Scholar 

  • L.H. Fink, K. Carlsen: Operating under stress and strain, IEEE Spectrum 15(3), 48–53 (1978)

    Article  Google Scholar 

  • T.E.D. Liacco: Systems security: The computer’s role, IEEE Spectrum 15(6), 43–50 (1978)

    Article  Google Scholar 

  • P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van Cutsem, V. Vittal, IEEE/CIGRE Joint Task Force on Stability Terms and Definitions: Definition and classification of power system stability, IEEE Trans. Power Syst. 19(3), 1387–1401 (2004)

    Article  Google Scholar 

  • G. Andersson: Power System Analysis (ITET ETH, Zurich 2012), Lecture 227-0526-00

    Google Scholar 

  • D. Mondal, A. Chakrabarti, A. Sengupta: Power System Small Signal Stability Analysis and Control (Academic Press, New York 2020)

    Google Scholar 

  • M.E. Baran, F.F. Wu: Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Trans. Power Deliv. 9(4), 101–102 (1989)

    Google Scholar 

  • L. Schmitt: Connecting Europe: Electricity, ENTSO-E Reports (ENTSO-E AISBL, Brussels 2018)

    Google Scholar 

  • N.R. Watson, J. Arrillaga: Power Systems Electromagnetic Transients Simulation (IET, London 2003)

    Book  Google Scholar 

  • J.A. Martinez-Velasco: Transient Analysis of Power Systems: A Practical Approach (Wiley, New York 2020)

    Book  Google Scholar 

  • C.A. Nucci, F. Rachidi, M. Rubinstein: Derivation of telegrapher’s equations and field-to transmission line interaction. In: Electromagnetic Field Interaction with Transmission Lines (WIT Press, Boston 2008)

    Google Scholar 

  • P. Deane, M. Brinkerink: Connecting the continents – A global power grid, IEEE Power Energy Mag. 18(2), 121–127 (2020)

    Article  Google Scholar 

  • M. Bollen, H. Fainan: Integration of Distributed Generation in the Power System, IEEE Press Series on Power Engineering (Wiley-Blackwell, New York 2011)

    Book  Google Scholar 

  • V. Perelmuter: Renewable Energy Systems: Simulation with Simulink and SimPowerSystems (CRC, Boca Raton 2016)

    Book  Google Scholar 

  • F. Blaabjerg, D.M. Ionel: Renewable Energy Devices and Systems with Simulations in MATLAB and ANSYS (CRC, Boca Raton 2017)

    Book  Google Scholar 

  • A. Ali, W. Li, R. Hussain, X. He, B.W. Williams, A.H. Memon: Overview of current microgrid policies, incentives and barriers in the European Union, United States and China, Sustainability 9(7), 1146 (2017)

    Article  Google Scholar 

  • Terna: Documento di descrizione degli scenari (Terna, Rome 2018)

    Google Scholar 

  • European Commission: Financing the Green Transition: The European Green Deal Investment Plan and Just Transition Mechanism (EC, Brussels 2020)

    Google Scholar 

  • Commission Expert Group: Electricity Interconnections with Neighbouring Countries. Second Report of the Commission Expert Group on Electricity Interconnection Targets (EC, Brussels 2019)

    Google Scholar 

  • D. Connolly, H. Lund, B.V. Mathiesen: Smart Energy Europe: The technical and economic impact of one potential \({\mathrm{100}}\%\) renewable energy scenario for the European Union, Renew. Sustain. Energy Rev. 60, 1634–1653 (2016)

    Article  Google Scholar 

  • European Commission: Communication on Strengthening Europe’s Energy Networks (EC, Brussels 2017)

    Google Scholar 

  • M. Bollen: The Smart Grid: Adapting the Power System to New Challenges, Synt. Lect. Power Electron. (Morgan, London 2011) p. 2013

    Book  Google Scholar 

  • A. Abur, A.G. Expósito: Power System State Estimation (CRC, Boca Raton 2004)

    Book  Google Scholar 

  • S. Sarri, L. Zanni, M. Popovic, J.Y. Le Boudec, M. Paolone: Performance assessment of linear state estimators using synchrophasor measurements, IEEE Trans. Instrum. Meas. 65(3), 535–548 (2016)

    Article  Google Scholar 

  • F. Conte, S. Massucco, M. Saviozzi, F. Silvestro: A stochastic optimization method for planning and real-time control of integrated PV-storage systems: Design and experimental validation, IEEE Trans. Sustain. Energy 3029(LV), 1–10 (2017)

    Google Scholar 

  • R. Bottura, A. Borghetti: Simulation of the volt/var control in distribution feeders by means of a networked multiagent system, IEEE Trans. Ind. Inform. 10(4), 2340–2353 (2014)

    Article  Google Scholar 

  • A. Borghetti, R. Bottura, M. Barbiroli, C.A. Nucci: Synchrophasors-based distributed secondary voltage/VAR control via cellular network, IEEE Trans. Smart Grid 8(1), 262–274 (2017)

    Article  Google Scholar 

  • M. Stadler, A. Naslé: Planning and implementation of bankable microgrids, Electr. J. 32(5), 24–29 (2019)

    Article  Google Scholar 

  • Council of European Energy Regulators: Regulatory Aspects of Self-Consumption and Energy Communities (CEER, Brussels 2019)

    Google Scholar 

  • European Commission: Clean energy for all Europeans, Euroheat Power 14(2), 3–4 (2019)

    Google Scholar 

  • Council of European Energy Regulators: Renewable Self-Consumers and Energy Communities. CEER White Paper Series, paper # VIII (CEER, Brussels 2017)

    Google Scholar 

  • S. Lilla, C. Orozco, A. Borghetti, F. Napolitano, F. Tossani: Day-ahead scheduling of a local energy community: An alternating direction method of multipliers approach, IEEE Trans. Power Syst. 35(2), 1132–1142 (2020)

    Article  Google Scholar 

  • E.L. Karfopoulos, K.A. Panourgias, N.D. Hatziargyriou: Distributed coordination of electric vehicles providing V2G regulation services, IEEE Trans. Power Syst. 31(4), 2834–2846 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Alberto Nucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nucci, C.A., Borghetti, A., Napolitano, F., Tossani, F. (2021). Basics of Power Systems Analysis. In: Papailiou, K.O. (eds) Springer Handbook of Power Systems. Springer Handbooks. Springer, Singapore. https://doi.org/10.1007/978-981-32-9938-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9938-2_5

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9937-5

  • Online ISBN: 978-981-32-9938-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics