Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides an overview on classical and innovative storage solutions and systems. The historical context and today's motivation for the development and application of energy storage are presented, together with methods and definitions for quantitative and qualitative comparison of different energy storage means. An energy-efficiency-based description method called The Theory of Ragone Plots is included.

From the classical pumped storage and its recent evolution as flexible speed-variable pump–turbines to the most recent high-power and high-energy density batteries coupled to smart grid configurations, the chapter will present the main characteristics and properties of each components. In addition, compressed-air technologies, flywheels, as well electrical magnetic and capacitive storage components are introduced. For large-capacity and so-called seasonal storage, the hydrogen storage principle is described.

Finally, system arrangements and applications are described as storage as a grid component, storage for renewable energies, hybrid power plants, or uninterruptible power sources.

Examples of recent realizations of large-scale storage plants complete the chapter.

Additional information and supplementary exercises for this chapter are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Rufer: Energy Storage—Systems and Components (CRC, Boca Raton 2017)

    Google Scholar 

  • P. Swain, A. Shyamaprasad: Energy storage technologies: Past, present and future. In: Int. Conf. Exhib. Smart Util. (Smart Cities, New Delhi 2019)

    Google Scholar 

  • Y.A. Cengel, M.A. Boles: Thermodynamics – An Engineering Approach, 6th edn. (McGraw-Hill, New York 2008)

    Google Scholar 

  • IEC 60027-2: Letter Symbols Including Conventions and Signs for Electrical Technology (IEC, Geneva 2005)

    Google Scholar 

  • B. Piccard, A. Borschberg: Objectif Soleil: L'Aventure Solarimpulse (Stock, Paris 2017)

    Google Scholar 

  • C. Glaize, S. Geniès: Les Accumulateurs Électrochimiques au Lithium, Haute Température et à Circulation d'Électrolyte (Hermes, Lavoisier, Paris 2013)

    Google Scholar 

  • B. Multon, J. Aubry, P. Haessig, H. Ben Ahmed: Systèmes de Stockage d’Énergie Électrique BE 8 100 (Techniques de l'ingénieur, Saint-Denis, 2013)

    Google Scholar 

  • T. Christen, M.W. Carlen: Theory of Ragone plots, J. Power Sources 91, 210–216 (2000)

    Google Scholar 

  • J. Lehmann: Air storage gas turbine power plants, a major distribution for energy storage. In: Int. Conf. Energy Storage (BHRA Fluid Engineering, Cransfield 1981) pp. 327–336

    Google Scholar 

  • D.R. Mack: Something new in power technology, IEEE Potentials (1993), https://doi.org/10.1109/45.283812

    Article  Google Scholar 

  • S. Van der Linden: CAES for today's market. In: EESAT 02 Conf. Electr. Energy Appl. Technol., San Francisco (2002), https://www.sandia.gov/ess-ssl/EESAT/2002_papers/00003.pdf

    Google Scholar 

  • G. Genta: Flywheel Energy Storage: Theory and Practice of Advanced Flywheel Systems (Butterworth, Cambridge 1985)

    Google Scholar 

  • C. Fahrni, A. Rufer, F. Bordry, J.P. Burnet: A novel 60 MW pulsed power system based on capacitive energy storage for particle accelerators. In: Eur. Conf. Power Electron. Appl. (EPE Association, Brussels 2007)

    Google Scholar 

  • A. Rufer, P. Barrade: A supercapacitor-based energy-storage system for elevators with soft commutated interface, IEEE Trans. Ind. Appl. 38(5), 1151–1159 (2002)

    Google Scholar 

  • M.H. Ali, B. Wu, R.A. Dougal: An overview of SMES applications in power and energy systems, IEEE Trans. Sustain. Energy 1(1), 38–47 (2010)

    Google Scholar 

  • Europump, Hydraulic Institute: Variable Speed Pumping: A Guide to Successful Applications (Elsevier, Amsterdam 2005)

    Google Scholar 

  • J. Liang, R.-G. Harley: Pumped storage hydro-plant models for system transient and long-term dynamic studies. In: IEEE Power Energy Soc. General Meet. (2010) pp. 1–8

    Google Scholar 

  • CEI-IEC 60193: Hydraulic Turbines, Storage Pumps and Pump-Turbines (IEC, Geneva 1999)

    Google Scholar 

  • C. Nicolet, J.-P. Taulan, J.-M. Burnier, M. Bourrilhon, G. Micoulet, A. Jaccard: Transient analysis of FMHL and pumped-storage power plant and new surge tank design. In: Proc. Congr. SHF Grenoble (SHF, Paris 2014)

    Google Scholar 

  • H. Tanaka: An 82 MW variable speed pumped-storage system, Water Power Dam Constr. 43(11), 25 (1991)

    Google Scholar 

  • P. Steimer, O. Senturk, S. Aubert, S. Linder: Converter-fed synchronous machine for pumped hydro storage plants. In: Proc. IEEE Energy Convers. Congr. Expo (2014) pp. 4561–4567

    Google Scholar 

  • S. Lemofouet: Investigation and Optimisation of Hybrid Electricity Storage Systems Based on Compressed Air and Supercapacitors, Dissertation (Ecole Polytechnique Fédérale de Lausanne, Lausanne 2006)

    Google Scholar 

  • Wikipedia: The Mekarski system (2019), https://en.wikipedia.org/wiki/Mekarski_system

  • Motor Development International: Homepage (2020), http://www.mdi.lu

  • STORNETIC GmbH: Powerful Storage System for Grid Services (STORNETIC GmbH, Jülich 2018), https://stornetic.com/assets/downloads/stornetic_general_presentation.pdf

    Google Scholar 

  • National Council of Examiners for Engineering and Surveying: Fundamentals of Engineering Supplied Reference Handbook, 7th edn. (National Council of Examiners for Engineering and Surveying, Clemson 2005), www.ncees.org

    Google Scholar 

  • S. Nomura, H. Chikaraishi, R. Shimada: Design study on series compensated thyristor converters for large scale SMES. In: Proc. 15th Eur. Conf. Power Electron. Appl. (EPE) (2013) pp. 1–10, https://doi.org/10.1109/EPE.2013.6634613

    Chapter  Google Scholar 

  • P. Barrade, A. Rufer: Current capability and power density of supercapacitors: Considerations on energy efficiency. In: Proc. Eur. Conf. Power Electron. Appl. (2003)

    Google Scholar 

  • B.E. Conway: Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (Springer, New York 1999)

    Google Scholar 

  • N.W. Miller, R.S. Zrebiec, G. Hunt: Design and commissioning of a 5 MVA, 2.5 MWh battery energy storage system. In: Proc. IEEE Transm. Distrib. Conf. (1996) pp. 339–345

    Google Scholar 

  • N.W. Miller, R.S. Zrebiec, R.W. Delmerico, G. Hunt: Battery energy storage systems for electric utility, industrial and commercial applications. In: Battery Conf. Appl. Adv. (IEEE, New York 1996) pp. 235–240

    Google Scholar 

  • Tesla: Energy Storage for a Sustainable Home (Tesla Powerwall, Athens 2015)

    Google Scholar 

  • J.-M. Timmermans, N. Alexandros, J. De Hoog, R. Gopalakrishnan, S. Goutam, N. Omar, J. Van Mierlo, A. Warnecke, D. Sauer, M. Swierczynski, D.I. Stroe, E. Martinez-Laserna, E. Sarasketa-Zabala, J. Gastelurrutia, N. Nerea: Batteries 2020—Lithium-ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters. In: Proc. Eur. Conf. Power Electron. Appl. (2016)

    Google Scholar 

  • P. Odru: Le Stockage de l'Énergie (Dunod, Paris 2013)

    Google Scholar 

  • Wikipedia: Gibbs free energy (2020), https://en.wikipedia.org/wiki/Gibbs_free_energy

  • F. Fusalba, S. Martinet: Electrochemical storage, cells and batteries. In: Energy Storage, ed. by Y. Brunet (Wiley, New York 2011)

    Google Scholar 

  • H. Girault: Analytical and Physical Electrochemistry (CRC, Boca Raton 2004)

    Google Scholar 

  • J.P. O'Connor: Off Grid Solar—A Handbook for Photovoltaics with Lead-Acid or Lithium-Ion Batteries (Createspace, North Charleston 2016)

    Google Scholar 

  • N. Kawakami, Y. Iijima, M. Fukuhara, M. Bando, Y. Sakanaka, K. Ogawa, T. Matsuda: Development and field experiences of stabilization systems using 34 MW NAS batteries for a 51 MW wind farm. In: 2010 IEEE Int. Symp. Ind. Electron. (IEEE, Bari 2010) pp. 2371–2376

    Google Scholar 

  • M. Skyllas-Kazacos, C. Menictas: The vanadium redox battery for emergency back-up applications. In: Proc. Power Energy Syst. Conv. Mark. (IEEE, New York 1997)

    Google Scholar 

  • M. Bartolozzi: Development of redox flow batteries. A historical bibliography, J. Power Sources 27(3), 219–234 (1989)

    Google Scholar 

  • C. Blanc, A. Rufer: Multiphysics and energetic modelling of a vanadium redox flow battery. In: Proc. IEEE Int. Conf. Sust. Energy Technol. (IEEE, New York 2008)

    Google Scholar 

  • C. Blanc: Modeling of a Vanadium Redox Flow Battery Electricity Storage System, Dissertation 4277 (EPFL, Lausanne 2009), https://infoscience.epfl.ch/record/129758/files/EPFL_TH4277.pdf

    Google Scholar 

  • G. Gahleitner: Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, Int. J. Power Hydrog. Energy 38, 2039–2061 (2013)

    Google Scholar 

  • F. Grasser, A. Rufer: PEMFC system efficiency optimization through model based control strategies. In: IEEE Veh. Power Propuls. Conf. (IEEE, Windsor 2006)

    Google Scholar 

  • ADS-TEC GmbH: StoraXe, Industrial and infrastructure scalable large-scale storage solutions (2014), https://www.ads-tec.de/fileadmin/download/doc/brochure/Brochure_Energy_Industrial_EN.pdf

  • H. Hõimoja, M. Vasiladiotis, S. Grioni, M. Capezzali, A. Rufer, H.B. Püttgen: Towards ultrafast charging solutions of electric vehicles. In: CIGRE Session 44 (CIGRE, Paris 2012)

    Google Scholar 

  • M. Vasiladiotis, A. Rufer: A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations, IEEE Trans. Ind. Electron. 62(5), 3213–3222 (2015)

    Google Scholar 

  • V. Franzitta, D. Curto, D. Rao: Energetic sustainability using renewable energies in the Mediterranean Sea, Sustainability 8, 1164 (2016), https://doi.org/10.3390/su8111164

    Article  Google Scholar 

  • Legrand: Uninterruptible power supply UPS, technical guide (2012), https://www.legrand.co.za/download/products_tobe%20deleted/ups-technical-guide.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Rufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rufer, A. (2021). Energy Storage. In: Papailiou, K.O. (eds) Springer Handbook of Power Systems. Springer Handbooks. Springer, Singapore. https://doi.org/10.1007/978-981-32-9938-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9938-2_16

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9937-5

  • Online ISBN: 978-981-32-9938-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics