Skip to main content

Molecular Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Role of Nanoparticles Against Multi-drug-Resistant Tuberculosis (MDR-TB)

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

Tuberculosis (TB) is a leading chronic bacterial infection caused by Mycobacterium tuberculosis (M. tuberculosis) and an increasing public health threat. The current therapeutic management of M. tuberculosis is insufficient due to the prolonged course of treatment, side effects of drugs, and unorganized therapy, and these aspects can lead to therapeutic failure and development of drug-resistant tuberculosis. The multi-drug-resistant (MDR), extensively drug-resistant (XDR), and total drug-resistant (TDR) tuberculosis pose significant challenges to the diagnosis, lengthy course of treatment, higher side effect, cost, and control of tuberculosis worldwide. Drug resistance to the anti-TB drugs has existed since the commencement of the antibiotic era. The understanding of the entire mechanisms of drug resistance helps in the development of newer rapid diagnostic tools and newer drug with novel targets for drug-resistant TB. The newer diagnostics and drug target tools help to improve the existing treatment, management, and prevent emergence of TB. The recent advances in the new-generation sequencing (NGS) help to unravel the novel gene mutations to understand the mechanism of drug resistance. The physiognomies of the nanoparticle in the treatment of MDR-TB and XDR-TB are discussed. The targeted nanoparticle-based treatment may further increase the efficacy with less dosage and reduced toxic side effects of drugs. This chapter summarises the molecular mechanism of drug resistance and novel drug delivery systems for treatment of the drug-resistant and susceptible TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad Z, Sharma S, Khuller GK, Singh P, Faujda J, Katoch VM (2006) Antimycobacterial activity of econazole against multidrug-resistant strains of Mycobacterium tuberculosis. Int J Antimicrob Agents 28:543–544

    Article  CAS  PubMed  Google Scholar 

  • Aragón LM, Navarro F, Heiser V, Garrigó M, Español M, Coll P (2006) Rapid detection of specific gene mutations associated with isoniazid or rifampicin resistance in Mycobacterium tuberculosis clinical isolates using non-fluorescent low-density DNA microarrays. J Antimicrob Chemother 57:825–831

    Article  PubMed  Google Scholar 

  • Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  CAS  PubMed  Google Scholar 

  • Bardou F, Raynaud C, Ramos C, Laneelle MA, Laneelle G (1998) Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbiology 144(Pt 9):2539–2544

    Article  CAS  PubMed  Google Scholar 

  • Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179

    Article  CAS  PubMed  Google Scholar 

  • Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, Locht C, Besra GS (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331

    CAS  PubMed  Google Scholar 

  • Boshoff HI, Mizrahi V, Barry CE (2002) Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J Bacteriol 184:2167–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  CAS  PubMed  Google Scholar 

  • Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413

    Article  CAS  PubMed  Google Scholar 

  • Chan ED, Chatergee D, Iseman D, Heifets B (2000) Pyrazinamide, ethambutol, ethionamide, and aminoglycosides. In: Tuberculosis: a comprehensive international approach, 2nd edn. CRC Press, Boca Raton, pp 780–781

    Google Scholar 

  • Chang MW, Tasaka H, Kuwabara M, Watanabe T, Matsuo Y (1979) Effects of panax ginseng extracts on the growth of Mycobacterium tuberculosis H37Rv. Hiroshima J Med Sci 28:115–118

    CAS  PubMed  Google Scholar 

  • Cohen-Gonsaud M, Ducasse S, Hoh F, Zerbib D, Labesse G, Quemard A (2002) Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. J Mol Biol 320:249–261

    Article  CAS  PubMed  Google Scholar 

  • Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106–110

    Article  CAS  Google Scholar 

  • Cooksey RC, Morlock GP, McQueen A, Glickman SE, Crawford JT (1996) Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 40:1186–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva PEA, Von Groll A, Martin A, Palomino JC (2011) Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 63:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2:18. https://doi.org/10.1007/s41204-017-0029-4

    Article  CAS  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    Article  CAS  PubMed  Google Scholar 

  • DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 97:9677–9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Mikusova K, Robuck KG, Scherman M, Brennan PJ, McNeil MR (1995) Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob Agents Chemother 39:694–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dessen A, Quemard A, Blanchard JS, Jacobs WR, Sacchettini JC (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641

    Article  CAS  PubMed  Google Scholar 

  • Dooley SW, Simone M (1994) The extent and management of drug-resistant tuberculosis: the American experience. In: Clinical tuberculosis. Chapman & Hall, London, pp 171–189

    Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799

    Article  CAS  Google Scholar 

  • Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front Microbiol 6:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Escuyer VE, Lety MA, Torrelles JB, Khoo KH, Tang JB, Rithner CD, Frehel C, McNeil MR, Brennan PJ, Chatterjee D (2001) The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem 276:48854–48862

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Barletta RG (2003) Roles of Mycobacterium smegmatis D-alanine: D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob Agents Chemother 47:283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu LM, Shinnick TM (2007) Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide Gene Chips. J Infect 54:277–284

    Article  PubMed  Google Scholar 

  • Gordon SV, Eiglmeier K, Garnier T, Brosch R, Parkhill J, Barrell B, Cole ST, Hewinson RG (2001) Genomics of Mycobacterium bovis. Tuberc Edinb 81:157–163

    Article  CAS  Google Scholar 

  • Graves JL, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hegde SS, Vetting MW, Roderick SL, Mitchenall LA, Maxwell A, Takiff HE, Blanchard JS (2005) A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308:1480–1483

    Article  CAS  PubMed  Google Scholar 

  • Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iram S, Akbar Khan J, Aman N, Nadhman A, Zulfiqar Z, Arfat Yameen M (2016) Enhancing the anti-enterococci activity of different antibiotics by combining with metal oxide nanoparticles. Jundishapur J Microbiol 9:e31302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson R, Jordaan AM, Pretorius L, Engelke E, van der Spuy G, Kewley C, Bosman M, van Helden PD, Warren R, Victor TC (2006) Ethambutol resistance testing by mutation detection. Int J Tuberc Lung Dis 10:68–73

    CAS  PubMed  Google Scholar 

  • Johnsson K, King DS, Schultz PG (1995) Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc 117:5009–5010

    Article  CAS  Google Scholar 

  • Kam KM, Yip CW, Cheung TL, Tang HS, Leung OC, Chan MY (2006) Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility. Microb Drug Resist 12:7–11

    Article  CAS  PubMed  Google Scholar 

  • Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V et al (2014) Drug Bank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, Teo AS, Wong SY (2001) Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 45:2157–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louw GE, Warren RM, Gey van Pittius NC, McEvoy CRE, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53:3181–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610

    Article  CAS  PubMed  Google Scholar 

  • Mitchison DA, Selkon JB (1956) The bactericidal activities of antituberculous drugs. Am Rev Tuberc 74:109–116; discussion, 116–123

    Google Scholar 

  • Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC (2003) ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 47:3799–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair J, Rouse DA, Bai GH, Morris SL (1993) The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol 10:521–527

    Article  CAS  PubMed  Google Scholar 

  • Nopponpunth V, Sirawaraporn W, Greene PJ, Santi DV (1999) Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J Bacteriol 181:6814–6821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noruzi M (2015) Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 38:1–14

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63:1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Khuller GK (2007) Nanoparticle-based oral drug delivery system for an injectable antibiotic-streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 53:437–441

    Article  CAS  PubMed  Google Scholar 

  • Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904

    Article  PubMed  CAS  Google Scholar 

  • Projan SJ (2003) Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430

    Article  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Int Union Tuberc Lung Dis 79:3–29

    Article  CAS  Google Scholar 

  • Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, El Sahly H, Moghazeh SL, Kreiswirth BN, Musser JM (2000) Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattan A, Kalia A, Ahmad N (1998) Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis 4:195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188:424–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667

    Article  CAS  PubMed  Google Scholar 

  • Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE, Stover CK (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Gopinath K, Singh N, Singh S (2014a) Deciphering the sequential events during in vivo acquisition of drug resistance in Mycobacterium tuberculosis. Int J Mycobacteriol 3:36–40

    Article  PubMed  Google Scholar 

  • Singh R, Smitha MS, Singh SP (2014b) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14:4745–4756

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Gopinath K, Sharma P, Bisht D, Sharma P, Singh N, Singh S (2015) Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J Med Res 141:27–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar S, Chopade BA (2016b) Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine 11:1889–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slayden RA, Barry CE (2002) The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberc Edinb 82:149–160

    Article  CAS  Google Scholar 

  • Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2:164–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 175:177–182

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2015) Antimicrobial and mosquitocidal activity of microbial synthesised silver nanoparticles. Parasitol Res 114:1023–1030

    Article  PubMed  Google Scholar 

  • Spies FS, da Silva PEA, Ribeiro MO, Rossetti ML, Zaha A (2008) Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob Agents Chemother 52:2947–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreevatsan S, Escalante P, Pan X, Gillies DA, Siddiqui S, Khalaf CN, Kreiswirth BN, Bifani P, Adams LG, Ficht T et al (1996) Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol 34:2007–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR, Telenti A, Musser JM (1997) Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 41:1677–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Katsukawa C, Tamaru A, Abe C, Makino M, Mizuguchi Y, Taniguchi H (1998) Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J Clin Microbiol 36:1220–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33:1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Wang L, Merkal RS (1973) Scanning electron microscopy of the H37Ra strain of Mycobacterium tuberculosis exposed to isoniazid. Antimicrob Agents Chemother 4:62–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Chang B, Abe C, Nikaido Y, Mizuguchi Y, Yoshida SI (1997) Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system. J Bacteriol 179:4795–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570

    Article  CAS  PubMed  Google Scholar 

  • Victor TC, van Rie A, Jordaan AM, Richardson M, van Der Spuy GD, Beyers N, van Helden PD, Warren R (2001) Sequence polymorphism in the rrs gene of Mycobacterium tuberculosis is deeply rooted within an evolutionary clade and is not associated with streptomycin resistance. J Clin Microbiol 39:4184–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilchèze C, Jacobs WR Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50

    Article  PubMed  CAS  Google Scholar 

  • Vilchèze C, Wang F, Arai M, Hazbón MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WR (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12:1027–1029

    Article  PubMed  CAS  Google Scholar 

  • Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X (2016) Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacterbaumannii. Int J Nanomedicine 11:3789–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Langley R, Gulten G, Dover LG, Besra GS, Jacobs WR Jr, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehrli W, Knusel F, Schmid K, Staehelin M (1968) Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci U S A 61:667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2017) WHO|Global tuberculosis report 2017. WHO, Geneva

    Google Scholar 

  • Zaunbrecher MA, Sikes RDJ, Metchock B, Shinnick TM, Posey JE (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferaseeis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106:20004–20009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13:1320–1330

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Gupta, A.K., Singh, S. (2020). Molecular Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Role of Nanoparticles Against Multi-drug-Resistant Tuberculosis (MDR-TB). In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_12

Download citation

Publish with us

Policies and ethics