Skip to main content

Wound Healing and Scarring

  • Chapter
  • First Online:
Total Scar Management

Abstract

Skin acts as the main protective barrier from the external environment. Compromise to this barrier, following trauma, burns, or surgical resection, can result in chronic wounds and scars that physically and emotionally devastate patients worldwide. Improved understanding of the cellular and molecular mechanisms underpinning wound healing holds potential to improve the lives of such individuals, as well as drive the development of new therapeutics. In this chapter, we focus on describing the basic mechanisms underlying mammalian response to injury, highlighting the local and systemic factors affecting healing, as well as presenting recent advances in the management of chronic wounds and scars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manring MM, Hawk A, Calhoun JH, Andersen RC. Treatment of war wounds: a historical review. Clin Orthop Relat Res. 2009;467(8):2168–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feinglass J, Pearce WH, Martin GJ, Gibbs J, Cowper D, Sorensen M, et al. Postoperative and late survival outcomes after major amputation: findings from the Department of Veterans Affairs National Surgical Quality Improvement Program. Surgery. 2001;130(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  3. Aulivola B, Hile CN, Hamdan AD, Sheahan MG, Veraldi JR, Skillman JJ, et al. Major lower extremity amputation: outcome of a modern series. Arch Surg. 2004;139(4):395–9. discussion 9.

    Article  PubMed  Google Scholar 

  4. Bayat A, McGrouther DA, Ferguson MW. Skin scarring. BMJ. 2003;326(7380):88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lawrence JW, Mason ST, Schomer K, Klein MB. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res. 2012;33(1):136–46.

    Article  PubMed  Google Scholar 

  6. Auden WH, Mendelson E. Collected poems. London: Faber and Faber; 1976. p. 696.

    Google Scholar 

  7. Kumar V, Abbas AK, Aster JC. Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Elsevier/Saunders; 2015. xvi, p. 1391.

    Google Scholar 

  8. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185–98.

    CAS  PubMed  Google Scholar 

  9. Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  11. Wheeler JB, Reed CE. Epidemiology of esophageal cancer. Surg Clin North Am. 2012;92(5):1077–87.

    Article  PubMed  Google Scholar 

  12. Mik G, Gholve PA, Scher DM, Widmann RF, Green DW. Down syndrome: orthopedic issues. Curr Opin Pediatr. 2008;20(1):30–6.

    Article  PubMed  Google Scholar 

  13. Wada T, Tone Y, Shibata F, Toma T, Yachie A. Delayed wound healing in leukocyte adhesion deficiency type 1. J Pediatr. 2011;158(2):342.

    Article  PubMed  Google Scholar 

  14. Gould L, Abadir P, Brem H, Carter M, Conner-Kerr T, Davidson J, et al. Chronic wound repair and healing in older adults: current status and future research. J Am Geriatr Soc. 2015;63(3):427–38.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kurosaka M, Suzuki T, Hosono K, Kamata Y, Fukamizu A, Kitasato H, et al. Reduced angiogenesis and delay in wound healing in angiotensin II type 1a receptor-deficient mice. Biomed Pharmacother. 2009;63(9):627–34.

    Article  CAS  PubMed  Google Scholar 

  16. Thorne C, Chung KC, Gosain A, Guntner GC, Mehrara BJ, Rubin JP, Spear SL, editors. Grabb and Smith’s plastic surgery. 7th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2014. xbiii, p. 1030.

    Google Scholar 

  17. Gottrup F. Oxygen in wound healing and infection. World J Surg. 2004;28(3):312–5.

    Article  PubMed  Google Scholar 

  18. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders (first of two parts). N Engl J Med. 1979;301(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  19. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders (second of two parts). N Engl J Med. 1979;301(2):77–85.

    Article  CAS  PubMed  Google Scholar 

  20. Vihersaari T, Kivisaari J, Ninikoski J. Effect of changes in inspired oxygen tension on wound metabolism. Ann Surg. 1974;179(6):889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jonsson K, Hunt TK, Mathes SJ. Oxygen as an isolated variable influences resistance to infection. Ann Surg. 1988;208(6):783–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

    Article  CAS  PubMed  Google Scholar 

  23. Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14(16):1983–91.

    CAS  PubMed  Google Scholar 

  24. Mader JT, Brown GL, Guckian JC, Wells CH, Reinarz JA. A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Infect Dis. 1980;142(6):915–22.

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez PG, Felix FN, Woodley DT, Shim EK. The role of oxygen in wound healing: a review of the literature. Dermatol Surg. 2008;34(9):1159–69.

    CAS  PubMed  Google Scholar 

  26. Bishop A. Role of oxygen in wound healing. J Wound Care. 2008;17(9):399–402.

    Article  CAS  PubMed  Google Scholar 

  27. Wu P, Nelson EA, Reid WH, Ruckley CV, Gaylor JD. Water vapour transmission rates in burns and chronic leg ulcers: influence of wound dressings and comparison with in vitro evaluation. Biomaterials. 1996;17(14):1373–7.

    Article  CAS  PubMed  Google Scholar 

  28. Junker JP, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv Wound Care (New Rochelle). 2013;2(7):348–56.

    Article  Google Scholar 

  29. Madden MR, Nolan E, Finkelstein JL, Yurt RW, Smeland J, Goodwin CW, et al. Comparison of an occlusive and a semi-occlusive dressing and the effect of the wound exudate upon keratinocyte proliferation. J Trauma. 1989;29(7):924–30. discussion 30-1.

    Article  CAS  Google Scholar 

  30. Svensjo T, Pomahac B, Yao F, Slama J, Eriksson E. Accelerated healing of full-thickness skin wounds in a wet environment. Plast Reconstr Surg. 2000;106(3):602–12. discussion 13-4.

    Article  PubMed  Google Scholar 

  31. Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193:293–4.

    Article  CAS  PubMed  Google Scholar 

  32. Eaglstein WH. Moist wound healing with occlusive dressings: a clinical focus. Dermatol Surg. 2001;27(2):175–81.

    CAS  PubMed  Google Scholar 

  33. Katz MH, Alvarez AF, Kirsner RS, Eaglstein WH, Falanga V. Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth. J Am Acad Dermatol. 1991;25(6 Pt 1):1054–8.

    Article  CAS  PubMed  Google Scholar 

  34. Field FK, Kerstein MD. Overview of wound healing in a moist environment. Am J Surg. 1994;167(1A):2S–6S.

    Article  CAS  PubMed  Google Scholar 

  35. Wilmore DW, Aulick LH, Mason AD, Pruitt BA Jr. Influence of the burn wound on local and systemic responses to injury. Ann Surg. 1977;186(4):444–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kruse CR, Nuutila K, Lee CC, Kiwanuka E, Singh M, Caterson EJ, et al. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015;23(4):456–64.

    Article  PubMed  Google Scholar 

  37. Fierheller M, Sibbald RG. A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers. Adv Skin Wound Care. 2010;23(8):369–79. quiz 80-1.

    Article  Google Scholar 

  38. Robson MC, Krizek TJ, Heggers JP. Biology of surgical infection. Curr Probl Surg. 1973;10:1–62.

    Article  Google Scholar 

  39. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91–6.

    Article  PubMed  Google Scholar 

  40. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–70.

    Article  CAS  PubMed  Google Scholar 

  41. Schreml S, Szeimies RM, Karrer S, Heinlin J, Landthaler M, Babilas P. The impact of the pH value on skin integrity and cutaneous wound healing. J Eur Acad Dermatol Venereol. 2010;24(4):373–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lengheden A, Jansson L. pH effects on experimental wound healing of human fibroblasts in vitro. Eur J Oral Sci. 1995;103(3):148–55.

    Article  CAS  PubMed  Google Scholar 

  43. Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW. Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects. Appl Environ Microbiol. 2002;68(4):1864–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol. 2007;25(1):19–25.

    Article  PubMed  Google Scholar 

  45. Hettrick H. The science of compression therapy for chronic venous insufficiency edema. J Am Col Certif Wound Spec. 2009;1(1):20–4.

    PubMed  PubMed Central  Google Scholar 

  46. Pinchcofsky-Devin G. Nutrition and wound healing. J Wound Care. 1994;3(5):231–4.

    Article  CAS  PubMed  Google Scholar 

  47. Pompeo M. Misconceptions about protein requirements for wound healing: results of a prospective study. Ostomy Wound Manage. 2007;53(8):30–2. 4, 6–8 passim.

    Google Scholar 

  48. Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol. 1998;111(5):850–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mirastschijski U, Haaksma CJ, Tomasek JJ, Agren MS. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res. 2004;299(2):465–75.

    Article  CAS  PubMed  Google Scholar 

  50. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burgess C. Topical vitamins. J Drugs Dermatol. 2008;7(7 Suppl):s2–6.

    PubMed  Google Scholar 

  52. Wilson JA, Clark JJ. Obesity: impediment to postsurgical wound healing. Adv Skin Wound Care. 2004;17(8):426–35.

    Article  PubMed  Google Scholar 

  53. Pierpont YN, Dinh TP, Salas RE, Johnson EL, Wright TG, Robson MC, et al. Obesity and surgical wound healing: a current review. ISRN Obes. 2014;2014:638936.

    PubMed  PubMed Central  Google Scholar 

  54. Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab. 2005;19(4):547–66.

    Article  CAS  PubMed  Google Scholar 

  55. Wahie S, Lawrence CM. Wound complications following diagnostic skin biopsies in dermatology inpatients. Arch Dermatol. 2007;143(10):1267–71.

    Article  PubMed  Google Scholar 

  56. Goldminz D, Bennett RG. Cigarette smoking and flap and full-thickness graft necrosis. Arch Dermatol. 1991;127(7):1012–5.

    Article  CAS  PubMed  Google Scholar 

  57. Jensen JA, Goodson WH, Hopf HW, Hunt TK. Cigarette smoking decreases tissue oxygen. Arch Surg. 1991;126(9):1131–4.

    Article  CAS  PubMed  Google Scholar 

  58. Wennmalm A, Alster P. Nicotine inhibits vascular prostacyclin but not platelet thromboxane formation. Gen Pharmacol. 1983;14(1):189–91.

    Article  CAS  PubMed  Google Scholar 

  59. Greiffenstein P, Molina PE. Alcohol-induced alterations on host defense after traumatic injury. J Trauma. 2008;64(1):230–40.

    Article  PubMed  Google Scholar 

  60. Radek KA, Matthies AM, Burns AL, Heinrich SA, Kovacs EJ, Dipietro LA. Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound healing. Am J Physiol Heart Circ Physiol. 2005;289(3):H1084–90.

    Article  CAS  PubMed  Google Scholar 

  61. Radek KA, Ranzer MJ, DiPietro LA. Brewing complications: the effect of acute ethanol exposure on wound healing. J Leukoc Biol. 2009;86(5):1125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wicke C, Halliday B, Allen D, Roche NS, Scheuenstuhl H, Spencer MM, et al. Effects of steroids and retinoids on wound healing. Arch Surg. 2000;135(11):1265–70.

    Article  CAS  PubMed  Google Scholar 

  63. Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Burgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun. 2008;372(2):336–40.

    Article  CAS  PubMed  Google Scholar 

  64. McShane DB, Bellet JS. Treatment of hypergranulation tissue with high potency topical corticosteroids in children. Pediatr Dermatol. 2012;29(5):675–8.

    Article  PubMed  Google Scholar 

  65. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. Diabetic Ulcer Study Group. J Am Coll Surg. 1996;183(1):61–4.

    CAS  PubMed  Google Scholar 

  66. Schiffman J, Golinko MS, Yan A, Flattau A, Tomic-Canic M, Brem H. Operative debridement of pressure ulcers. World J Surg. 2009;33(7):1396–402.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 2007;13(1–2):30–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baranoski S, Ayello EA. Wound care essentials: practice principles. 4th ed. Philadelphia: Wolters Kluwer; 2016. xiv, p. 593.

    Google Scholar 

  69. Murphy PS, Evans GR. Advances in wound healing: a review of current wound healing products. Plast Surg Int. 2012;2012:190436.

    PubMed  PubMed Central  Google Scholar 

  70. Dhivya S, Padma VV, Santhini E. Wound dressings: a review. Biomedicine (Taipei). 2015;5(4):22.

    Article  Google Scholar 

  71. Ramshaw JA, Werkmeister JA, Glattauer V. Collagen-based biomaterials. Biotechnol Genet Eng Rev. 1996;13:335–82.

    Article  CAS  PubMed  Google Scholar 

  72. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002;23(3):833–40.

    Article  CAS  PubMed  Google Scholar 

  73. Doillon CJ, Silver FH. Collagen-based wound dressing: effects of hyaluronic acid and fibronectin on wound healing. Biomaterials. 1986;7(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  74. Wieman TJ. Clinical efficacy of becaplermin (rhPDGF-BB) gel. Becaplermin Gel Studies Group. Am J Surg. 1998;176(2A Suppl):74S–9S.

    Article  CAS  PubMed  Google Scholar 

  75. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283–316.

    Article  CAS  PubMed  Google Scholar 

  76. Greer N, Foman N, Dorrian J, Fitzgerald P, MacDonald R, Rutks I, et al. Advanced wound care therapies for non-healing diabetic, venous, and arterial ulcers: a systematic review. VA evidence-based synthesis program reports. Washington, DC; 2012.

    Google Scholar 

  77. Robson MC, Phillips TJ, Falanga V, Odenheimer DJ, Parish LC, Jensen JL, et al. Randomized trial of topically applied repifermin (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers. Wound Repair Regen. 2001;9(5):347–52.

    Article  CAS  PubMed  Google Scholar 

  78. Duzgun AP, Satir HZ, Ozozan O, Saylam B, Kulah B, Coskun F. Effect of hyperbaric oxygen therapy on healing of diabetic foot ulcers. J Foot Ankle Surg. 2008;47(6):515–9.

    Article  PubMed  Google Scholar 

  79. Londahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care. 2010;33(5):998–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kalani M, Jorneskog G, Naderi N, Lind F, Brismar K. Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers. Long-term follow-up. J Diabetes Complications. 2002;16(2):153–8.

    Article  PubMed  Google Scholar 

  81. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 1999;7(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  82. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  83. Fitton AR, Drew P, Dickson WA. The use of a bilaminate artificial skin substitute (Integra) in acute resurfacing of burns: an early experience. Br J Plast Surg. 2001;54(3):208–12.

    Article  CAS  PubMed  Google Scholar 

  84. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38(6):563–76. discussion 77.

    Article  CAS  PubMed  Google Scholar 

  85. Panayi AC, Leavitt T, Orgill DP. Evidence based review of negative pressure wound therapy. World J Dermatol. 2017;6(1):1–16.

    Article  Google Scholar 

  86. Huang C, Leavitt T, Bayer LR, Orgill DP. Effect of negative pressure wound therapy on wound healing. Curr Probl Surg. 2014;51(7):301–31.

    Article  PubMed  Google Scholar 

  87. Urschel JD, Scott PG, Williams HT. The effect of mechanical stress on soft and hard tissue repair; a review. Br J Plast Surg. 1988;41(2):182–6.

    Article  CAS  PubMed  Google Scholar 

  88. Anghel EL, Kim PJ. Negative-pressure wound therapy: a comprehensive review of the evidence. Plast Reconstr Surg. 2016;138(3 Suppl):129S–37S.

    Article  CAS  PubMed  Google Scholar 

  89. Stannard JP, Volgas DA, McGwin G 3rd, Stewart RL, Obremskey W, Moore T, et al. Incisional negative pressure wound therapy after high-risk lower extremity fractures. J Orthop Trauma. 2012;26(1):37–42.

    Article  PubMed  Google Scholar 

  90. Masden D, Goldstein J, Endara M, Xu K, Steinberg J, Attinger C. Negative pressure wound therapy for at-risk surgical closures in patients with multiple comorbidities: a prospective randomized controlled study. Ann Surg. 2012;255(6):1043–7.

    Article  PubMed  Google Scholar 

  91. Gillespie BM, Rickard CM, Thalib L, Kang E, Finigan T, Homer A, et al. Use of negative-pressure wound dressings to prevent surgical site complications after primary hip arthroplasty: a pilot RCT. Surg Innov. 2015;22(5):488–95.

    Article  PubMed  Google Scholar 

  92. Saaiq M, Hameed Ud D, Khan MI, Chaudhery SM. Vacuum-assisted closure therapy as a pretreatment for split thickness skin grafts. J Coll Physicians Surg Pak. 2010;20(10):675–9.

    PubMed  Google Scholar 

  93. Petkar KS, Dhanraj P, Kingsly PM, Sreekar H, Lakshmanarao A, Lamba S, et al. A prospective randomized controlled trial comparing negative pressure dressing and conventional dressing methods on split-thickness skin grafts in burned patients. Burns. 2011;37(6):925–9.

    Article  PubMed  Google Scholar 

  94. Bloemen MC, van der Wal MB, Verhaegen PD, Nieuwenhuis MK, van Baar ME, van Zuijlen PP, et al. Clinical effectiveness of dermal substitution in burns by topical negative pressure: a multicenter randomized controlled trial. Wound Repair Regen. 2012;20(6):797–805.

    Article  PubMed  Google Scholar 

  95. Eisenhardt SU, Schmidt Y, Thiele JR, Iblher N, Penna V, Torio-Padron N, et al. Negative pressure wound therapy reduces the ischaemia/reperfusion-associated inflammatory response in free muscle flaps. J Plast Reconstr Aesthet Surg. 2012;65(5):640–9.

    Article  CAS  PubMed  Google Scholar 

  96. Daya M, Nair V. Traction-assisted dermatogenesis by serial intermittent skin tape application. Plast Reconstr Surg. 2008;122(4):1047–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis P. Orgill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panayi, A.C., Reitblat, C., Orgill, D.P. (2020). Wound Healing and Scarring. In: Ogawa, R. (eds) Total Scar Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9791-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9791-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9790-6

  • Online ISBN: 978-981-32-9791-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics