Skip to main content

A Novel Approach for Reversible Realization of 4 × 4 Bit Vedic Multiplier Circuit

  • Conference paper
  • First Online:
Advances in VLSI, Communication, and Signal Processing

Abstract

The availability of fast and efficient processing systems is the basic requirement of current era. In digital systems, multiplications is one of the major operations, which limit the speed and efficiency of the system. This paper describes a novel approach for the Reversible realization of 4-Bit Vedic multiplier circuit with optimized performance parameters. Vedic multipliers are based on the concept of Vedic mathematics. It is a very fast multiplier, as it generates all the partial products and their sum in single step only. Moreover, designing of this multiplier using reversible approach will lead to the low loss fast multiplier circuits for digital systems. Some parameters indicating performance of the circuit, such as number of gates (TG), constant inputs (CI), garbage outputs (GO) and quantum cost (QC) of proposed multiplier design is also compared and analyzed with the earlier designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anju, V.K., Agrawal, V.K.: FPGA implementation of low power and high speed vedic multiplier using vedic mathematics. IOSR J. VLSI Signal Process. 2(5), 51–57 (2013)

    Article  Google Scholar 

  2. Rakshith, T.R., Saligram, R.: Design of high speed low power multiplier using reversible logic: a vedic mathematical approach. In: International Conference on Circuits, Power and Computing Technologies (ICCPCT), 2013, IEEExplore, pp. 775–781 (2013)

    Google Scholar 

  3. Shivarathnamma, G.J., Kurian, M.Z.: A novel approach of 4*4 vedic multiplier using reversible logic gates. In: 1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE, International Journal of Advanced Networking & Applications (IJANA), pp. 538–542 (2016)

    Google Scholar 

  4. Paramasivam, M.E., Sabeenian, R.S.: An efficient bit reduction binary multiplication algorithm using vedic methods. In: IEEE 2nd International Advance Computing Conference, 2010, ISBN: 978-1-4244-4791-6/10, pp. 25–28 (2010)

    Google Scholar 

  5. Kanhe, A., Das, S.K., Singh, A.K.: Design and implementation of low power multiplier using vedic multiplication technique. Int. J. Comput. Sci. Commun. 3(1), 131–132 (2012)

    Google Scholar 

  6. Thapliyal, H., Srinivas, M.B.: Novel design and reversible logic synthesis of multiplexer based full adder and multipliers. IEEE 2, 1593–1596 (2005)

    Google Scholar 

  7. Rice, J.E.: A new look at reversible memory elements. In: Proceedings International Symposium on Circuits and Systems (ISCAS) 2006, Kos, Greece, 21–24 May 2006, pp. 243–246 (2006)

    Google Scholar 

  8. Noor Mahammad, S.K., Sastry Hari, S.K., Shroff, S., Kamakoti, V.: Constructing online testable circuits using reversible logic. In: Proceedings of the 10th IEEE VLSI Design and Test Symposium (VDAT), Goa, India, August 2006, pp. 373–383 (2006)

    Google Scholar 

  9. Murugesan, G., Lavanya, S.: Design and implementation of high speed multiplier using vedic mathematics. ARPN J. Eng. Appl. Sci. 10(16), 6758–6764 (2015)

    Google Scholar 

  10. Shukla, Vandana, Singh, O.P., Mishra, G.R., Tiwari, R.K.: Design and analysis of reversible realization of vedic multiplier circuit. Sylwan 162(6), 32–43 (2018)

    Google Scholar 

  11. Landauer, R.: Irreversibility and heat generation in the computational process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  Google Scholar 

  12. Moore, G.E.: Cramming more compounds onto integrated circuits. Electronics 38(8) (1965)

    Google Scholar 

  13. Bennett, C.H.: Logical reversibililty of computation. IBM J. Res. Dev., pp. 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  14. Toffoli, T.: Reversible Computing. Tech memo MIT/LCS/ TM-151, MIT Lab for Computer Science (1980)

    Google Scholar 

  15. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  16. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  17. Feynman, R.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)

    Article  Google Scholar 

  18. Sengupta, D., Sultana, M., Chaudhuri, A.: Realization of a novel reversible SCG gate and its application for designing parallel adder/subtractor and match logic. Int. J. Comput. Appl. 31(9), 30–35 (2011). (0975-8887)

    Google Scholar 

  19. Thapliyal, H., Vinod, A.P.: Design of reversible sequential elements with feasibility of transistor implementation. In: Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, pp. 625–628, New Orleans, USA (2007)

    Google Scholar 

  20. Singla, P., Malik, N.K.: A cost-effective design of reversible programmable logic array. Int. J. Comput. Appl. 41(15) (2012)

    Article  Google Scholar 

  21. Shukla, Vandana, Singh, O.P., Mishra, G.R., Tiwari, R.K.: Novel design of a multiplexer circuit using reversible logic. IJCER 3(10), 30–35 (2013)

    Google Scholar 

  22. Shukla, H.P., Rao, A.G., Mall, P.: Design of low power comparator circuit based on reversible logic technology. In: 1st International Conference on Emerging Trends and Applications in Computer Science (ICETACS), IEEE, pp. 6–11 (2013)

    Google Scholar 

  23. Shukla, V., Singh, O.P., Mishra, G.R.: An efficient approach for the reversible realization of 2:4 decoder circuit. J. Int. Acad. Phys. Sci. 21(4) (2017)

    Google Scholar 

  24. Frank, M.P.: Introduction to reversible computing: motivation, progress and challenges. In: Proceedings of the 2nd Conference on Computing Frontiers, pp. 385–390 (2005)

    Google Scholar 

  25. Wang, J.C., Pang, Y., Xia, Y.: A BCD priority encoder designed by reversible logic. In: IEEE, pp. 318–321 (2012)

    Google Scholar 

  26. Aradhya, R., Chinmaye, R., Muralidhara, K.: Design, optimization and synthesis of efficient reversible logic binary decoder. Int. J. Comput. Appl. 46, 45–51 (2012)

    Google Scholar 

  27. Picton, P.: Multi-valued sequential logic design using Fredkin gates. Multiple-Valued Logic Journal 1, 241–251 (1996)

    MATH  Google Scholar 

  28. Nagamani, A.N., Jayashree, H.V., Bhagyalakshmi, H.R.: Novel low power comparator design using reversible logic gates. Indian J. Comput. Sci. Eng. (IJCSE) 2(4), 566–574 (2011)

    Google Scholar 

  29. Shukla, V., Singh, O.P., Mishra, G.R., Tiwari, R.K.: Performance parameters optimization and implementation of adder/subtractor circuit using reversible logic approach. In: 2016 11th International Conference on Industrial and Information Systems (ICIIS), IEEExplore, pp. 323–328 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shukla, V., Singh, O.P., Mishra, G.R., Tiwari, R.K. (2020). A Novel Approach for Reversible Realization of 4 × 4 Bit Vedic Multiplier Circuit. In: Dutta, D., Kar, H., Kumar, C., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9775-3_67

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9774-6

  • Online ISBN: 978-981-32-9775-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics