Skip to main content

Catalytic Asymmetric C–H Oxidation with H2O2 and O2

  • Chapter
  • First Online:
Frontiers of Green Catalytic Selective Oxidations

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter surveys the existing catalyst systems, either organocatalytic or metal-based, for the chemo- and stereoselective oxidation of C–H groups with the environmentally benign oxidants H2O2 and O2, reported in the last 30 years. Both the approaches relying on “classical” asymmetric oxidation and oxidative desymmetrization of complex substrates are considered, with focus on the catalytic properties of the catalysts, such as chemo- and stereoselectivity, activity, efficiency, and substrate scope. Currently available data on the nature of the catalytically active sites, the mechanisms of oxidant activation and C–H activation, and of oxygen transfer, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen MS, White MC (2007) A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318:783–787. https://doi.org/10.1126/science.1148597

    Article  CAS  PubMed  Google Scholar 

  2. Chen MS, White MC (2010) Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327:566–571. https://doi.org/10.1126/science.1183602

    Article  CAS  PubMed  Google Scholar 

  3. Shul’pin GB (2010) Selectivity enhancement in functionalization of C–H bonds: a review. Org Biomol Chem 8:4217–4228. https://doi.org/10.1039/c004223d

    Article  CAS  Google Scholar 

  4. Shul’pin GB (2016) New trends in oxidative functionalization of carbon-hydrogen bonds: a review. Catalysts 6:4. https://doi.org/10.3390/catal6040050

    Article  Google Scholar 

  5. Hartwig JF, Larsen MA (2016) Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent Sci 2:281–292. https://doi.org/10.1021/acscentsci.6b00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ottenbacher RV, Talsi EP, Bryliakov KP (2016) Direct selective oxidative functionalization of C–H bonds with H2O2: Mn-aminopyridine complexes challenge the dominance of non-heme Fe catalysts. Molecules 21:1454. https://doi.org/10.3390/molecules21111454

    Article  CAS  PubMed Central  Google Scholar 

  7. Kagan H (1999) Historical perspective. In: Jacobsen EN, Pfalz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer, Berlin, p 1999

    Google Scholar 

  8. Groves JT, Viski P (1989) Asymmetric hydroxylation by a chiral iron porphyrin. J Am Chem Soc 111:8537–8538. https://doi.org/10.1021/ja00204a047

    Article  CAS  Google Scholar 

  9. Groves JT, Viski P (1990) Asymmetric hydroxylation, epoxidation, and sulfoxidation catalyzed by vaulted binaphthyl metalloporphyrins. J Org Chem 55:3628–3634. https://doi.org/10.1021/jo00298a046

    Article  CAS  Google Scholar 

  10. Hamachi K, Irie R, Katsuki T (1996) Asymmetric benzylic oxidation using a Mn-salen complex as catalyst. Tetrahedron Lett 37:4979–4982. https://doi.org/10.1016/0040-4039(96)00984-7

    Article  CAS  Google Scholar 

  11. Hamada T, Irie R, Mihara J, Hamachi K, Katsuki T (1998) Highly enantioselective benzylic hydroxylation with concave type of (salen)manganese(III) complex. Tetrahedron 54:10017–10028. https://doi.org/10.1016/S0040-4020(98)00603-6

    Article  CAS  Google Scholar 

  12. Zhang R, Yu WY, Lai TS, Che CM (1999) Enantioselective hydroxylation of benzylic C–H bonds by D4-symmetric chiral oxoruthenium porphyrins. Chem Commun 1791–1792. https://doi.org/10.1039/a904100a

  13. Murahashi SI, Noji S, Komiya N (2004) Catalytic enantioselective oxidation of alkanes and alkenes using (salen)manganese complexes bearing a chiral binaphthyl strapping unit. Adv Synth Catal 346:195–198. https://doi.org/10.1002/adsc.200303190

    Article  CAS  Google Scholar 

  14. Zhang R, Yu WY, Che CM (2005) Catalytic enantioselective oxidation of aromatic hydrocarbons with D4-symmetric chiral ruthenium porphyrin catalysts. Tetrahedron Asymmetry 16:3520–3526. https://doi.org/10.1016/j.tetasy.2005.08.059

    Article  CAS  Google Scholar 

  15. Le Maux P, Srour HF, Simonneaux G (2012) Enantioselective water-soluble iron–porphyrin-catalyzed epoxidation with aqueous hydrogen peroxide and hydroxylation with iodobenzene diacetate. Tetrahedron 68:5824–5828. https://doi.org/10.1016/j.tet.2012.05.014

    Article  CAS  Google Scholar 

  16. Miyafuji A, Katsuki T (1998) Asymmetric desymmetrization of meso-tetrahydrofuran derivatives by highly enantiotopic selective C–H oxidation. Tetrahedron 54:10339–10438. https://doi.org/10.1016/S0040-4020(98)00489-X

    Article  CAS  Google Scholar 

  17. Komiya N, Noji S, Murahashi SI (1998) Manganese catalyzed asymmetric oxidation of alkanes to optically active ketones bearing asymmetric center at the α-position. Tetrahedron Lett 39:7921–7924. https://doi.org/10.1016/S0040-4039(98)01757-2

    Article  CAS  Google Scholar 

  18. Murahashi SI, Noji S, Hirabayashi T, Komiya N (2005) Manganese-catalyzed enantioselective oxidation of C–H bonds of alkanes and silyl ethers to optically active ketones. Tetrahedron Asymmetry 16:3527–3535. https://doi.org/10.1016/j.tetasy.2005.08.056

    Article  CAS  Google Scholar 

  19. Frost JR, Huber SM, Breitenlechner S, Bannwarth C, Bach T (2015) Enantiotopos-selective C–H oxygenation catalyzed by a supramolecular ruthenium complex. Angew Chem Int Ed 54:691–695. https://doi.org/10.1002/anie.201409224

    Article  CAS  Google Scholar 

  20. Masui M, Ando A, Shioiri T (1988) New methods and reagents in organic synthesis. 75. asymmetric synthesis of α-hydroxy ketones using chiral phase transfer catalysts. Tetrahedron Lett 29:2835–2838. https://doi.org/10.1016/0040-4039(88)85224-9

    Article  CAS  Google Scholar 

  21. Dehmlow EV, Düttmann D, Neumann B, Stammler HG (2002) Monodeazacinchona alkaloid derivatives: synthesis and preliminary applications as phase-transfer catalysts. Eur J Org Chem 2087–2093. https://doi.org/10.1002/1099-0690(200207)2002:13%3c2087::aid-ejoc2087%3e3.0.co;2-z

    Article  Google Scholar 

  22. Sano D, Nagata K, Itoh T (2008) Catalytic asymmetric hydroxylation of oxindoles by molecular oxygen using a phase-transfer catalyst. Org Lett 10:1593–1595. https://doi.org/10.1021/ol800260r

    Article  CAS  PubMed  Google Scholar 

  23. Lian M, Li Z, Cai Y, Meng Q, Gao Z (2012) Enantioselective photooxygenation of β-keto esters by chiral phase-transfer catalysis using molecular oxygen. Chem Asian J 7:2019–2023. https://doi.org/10.1002/asia.201200358

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zheng Z, Lian M, Yin H, Zhao J, Meng Q, Gao Z (2016) Photo-organocatalytic enantioselective α-hydroxylation of β-keto esters and β-keto amides with oxygen under phase transfer catalysis. Green Chem 18:5493–5499. https://doi.org/10.1039/C6GC01245K

    Article  CAS  Google Scholar 

  25. Wang H, Yin H, Tang X, Wu Y, Meng Q, Gao Z (2016) A series of cinchona-derived N-oxide phase-transfer catalysts: application to the photo-organocatalytic enantioselective α-hydroxylation of β-dicarbonyl compounds. J Org Chem 81:7042–7050. https://doi.org/10.1021/acs.joc.6b00856

    Article  CAS  PubMed  Google Scholar 

  26. Sim SBD, Wang M, Zhao Y (2015) Phase-transfer-catalyzed enantioselective α–hydroxylation of acyclic and cyclic ketones with oxygen. ACS Catal 5:3609–3612. https://doi.org/10.1021/acscatal.5b00583

    Article  CAS  Google Scholar 

  27. de Vries EFJ, Ploeg L, Colao M, Brussee J, van der Jen A (1995) Enantioselective oxidation of aromatic ketones by molecular oxygen, catalyzed by chiral monoaza-crown ethers. Tetrahedron Asymmetry 6:1123–1132. https://doi.org/10.1016/0957-4166(95)00138-f

    Article  CAS  Google Scholar 

  28. Yang Y, Moinodeen F, Chin W, Ma T, Jiang Z, Tan CH (2012) Pentanidium-catalyzed enantioselective α-hydroxylation of oxindoles using molecular oxygen. Org Lett 14:4762–4765. https://doi.org/10.1021/ol302030v

    Article  CAS  PubMed  Google Scholar 

  29. Córdova A, Sundén H, Engqvist M, Ibrahem I, Casas J (2004) The direct amino acid-catalyzed asymmetric incorporation of molecular oxygen to organic compounds. J Am Chem Soc 126:8914–8915. https://doi.org/10.1021/ja047930t

    Article  CAS  PubMed  Google Scholar 

  30. Sundén H, Engqvist M, Casas J, Ibrahem I, Córdova A (2004) Direct amino acid catalyzed asymmetric α-oxidation of ketones with molecular oxygen. Angew Chem Int Ed 43:6532–6535. https://doi.org/10.1002/anie.200460295

    Article  CAS  Google Scholar 

  31. Ibrahem I, Zhao GL, Sundén H, Córdova A (2006) A route to 1,2-diols by enantioselective organocatalytic α-oxidation with molecular oxygen. Tetrahedron Lett 47:4659–4663. https://doi.org/10.1016/j.tetlet.2006.04.133

    Article  CAS  Google Scholar 

  32. Li Z, Lian M, Yang F, Meng Q, Gao Z (2014) Diterpenoid alkaloid lappaconine derivative catalyzed asymmetric α-hydroxylation of β-dicarbonyl compounds with hydrogen peroxide. Eur J Org Chem 3491–3495. https://doi.org/10.1002/ejoc.201402019

    Article  CAS  Google Scholar 

  33. Ohmatsu K, Ando Y, Ooi T (2017) In situ electrophilic activation of hydrogen peroxide for catalytic asymmetric α-hydroxylation of 3-substituted oxindoles. Synlett 28:1291–1294. https://doi.org/10.1055/s-0036-1558958

    Article  CAS  Google Scholar 

  34. Srour H, Le Maux P, Simonneaux G (2012) Enantioselective manganese-porphyrin-catalyzed epoxidation and C–H hydroxylation with hydrogen peroxide in water/methanol solutions. Inorg Chem 51:5850–5856. https://doi.org/10.1021/ic300457z

    Article  CAS  PubMed  Google Scholar 

  35. Amiri N, Le Maux P, Srour H, Nasri H, Simonneaux G (2014) Nitration of Halterman porphyrin: a new route for fine tuning chiral iron and manganese porphyrins with application in epoxidation and hydroxylation reactions using hydrogen peroxide as oxidant. Tetrahedron 70:8836–8842. https://doi.org/10.1016/j.tet.2014.10.001

    Article  CAS  Google Scholar 

  36. Talsi EP, Samsonenko DG, Bryliakov KP (2017) Asymmetric autoamplification in the oxidative kinetic resolution of secondary benzylic alcohols catalyzed by manganese complexes. ChemCatChem 9:2599–2607. https://doi.org/10.1002/cctc.201700438

    Article  CAS  Google Scholar 

  37. Talsi EP, Samsonenko DG, Ottenbacher RV, Bryliakov KP (2017) Highly enantioselective C–H oxidation of arylalkanes with H2O2 in the presence of chiral Mn aminopyridine complexes. ChemCatChem 9:4580–4586. https://doi.org/10.1002/cctc.201701169

    Article  CAS  Google Scholar 

  38. Ottenbacher RV, Talsi EP, Rybalova TV, Bryliakov KP (2018) Enantioselective benzylic hydroxylation of arylalkanes with H2O2 in fluorinated alcohols in the presence of chiral Mn aminopyridine complexes. ChemCatChem 10:5323–5330. https://doi.org/10.1002/cctc.201801476

    Article  CAS  Google Scholar 

  39. Dantignana V, Milan M, Cussó O, Company A, Bietti M Costas M (2018) Chemoselective aliphatic C–H bond oxidation enabled by polarity reversal. ACS Cent Sci 3:1350–1358. https://doi.org/10.1021/acscentsci.7b00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hao B, Gunaratna MJ, Zhang M, Weerasekara S, Seiwald SN, Nguyen VT, Meier A, Hua DH (2016) Chiral-substituted Poly-N-vinylpyrrolidinones and bimetallic nanoclusters in catalytic asymmetric oxidation reactions. J Am Chem Soc 138:16839–16848. https://doi.org/10.1021/jacs.6b12113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Milan M, Bietti M, Costas M (2017) Highly enantioselective oxidation of nonactivated aliphatic C–H bonds with hydrogen peroxide catalyzed by manganese complexes. ACS Cent Sci 3:196–204. https://doi.org/10.1021/acscentsci.6b00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiu B, Xu D. Sun, Q, Miao C, Lee YM, Li XX, Nam W, Sun W (2018) Highly enantioselective oxidation of spirocyclic hydrocarbons by bioinspired manganese catalysts and hydrogen peroxide. ACS Catal 8:479–487. https://doi.org/10.1021/acscatal.7b03601

    Article  CAS  Google Scholar 

  43. Qiu B, Xu D, Sun Q, Lin J, Sun W (2019) Manganese-catalyzed asymmetric oxidation of methylene C–H of spirocyclic oxindoles and dihydroquinolinones with hydrogen peroxide. Org Lett 21:618–622. https://doi.org/10.1021/acs.orglett.8b03652

    Article  CAS  PubMed  Google Scholar 

  44. Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP (2012) Highly efficient, regioselective, and stereospecific oxidation of aliphatic C–H groups with H2O2, catalyzed by aminopyridine manganese complexes. Org Lett 14:4310–4313. https://doi.org/10.1021/ol3015122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the Russian Foundation for Basic Research (#16-29-10666 and # 18-33-20078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin P. Bryliakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bryliakov, K.P. (2019). Catalytic Asymmetric C–H Oxidation with H2O2 and O2. In: Bryliakov, K. (eds) Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9751-7_11

Download citation

Publish with us

Policies and ethics