Skip to main content

Advances of Single-Cell Analysis on Microfluidics

  • Chapter
  • First Online:
Microfluidics for Single-Cell Analysis

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1195 Accesses

Abstract

The advances of microfluidic technologies have promoted researchers to study the inherent heterogeneity of single cells in cell populations. This will be helpful in the acknowledgment of major disease and invention of personalized medicine. Different microfluidic approaches provide varieties of functions in the process of single-cell analysis. In this chapter, we introduce decades of the history in single-cell analysis and give an outline of the mechanisms of various microfluidic-based approaches for cell sorting, single-cell isolation, and single-cell lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. https://doi.org/10.1126/science.1070919

    Article  CAS  Google Scholar 

  2. Fiering S, Northrop JP, Nolan GP, Mattila PS, Crabtree GR, Herzenberg LA (1990) Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev 4(10):1823–1834

    Article  CAS  Google Scholar 

  3. Hosic S, Murthy SK, Koppes AN (2016) Microfluidic sample preparation for single cell analysis. Anal Chem 88:354–380. https://doi.org/10.1021/acs.analchem.5b04077

    Article  CAS  PubMed  Google Scholar 

  4. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH (1978) Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38(10):3174–3181

    CAS  PubMed  Google Scholar 

  5. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, Grubor V, Levy D, Lundin P, Maner S, Zetterberg A, Hicks J, Wigler M (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20(1):68–80. https://doi.org/10.1101/gr.099622.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322(5907):1511–1516. https://doi.org/10.1126/science.1160165

    Article  CAS  PubMed  Google Scholar 

  7. Zhong JF, Chen Y, Marcus JS, Scherer A, Quake SR, Taylor CR, Weiner LP (2008) A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74. https://doi.org/10.1039/b712116d

    Article  CAS  PubMed  Google Scholar 

  8. Murphy TW, Zhang Q, Naler LB, Ma S, Lu C (2018) Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 143(1):60–80. https://doi.org/10.1039/c7an01346a

    Article  CAS  Google Scholar 

  9. Huang Q, Mao S, Khan M, Lin JM (2019) Single-cell assay on microfluidic devices. Analyst 144:808–823. https://doi.org/10.1039/c8an01079j

    Article  CAS  PubMed  Google Scholar 

  10. Chen QS, Wu J, Zhuang QC, Lin XX, Zhang J, Lin JM (2013) Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci Rep 3:2433. https://doi.org/10.1038/srep02433

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mao S, Zhang W, Huang Q, Khan M, Li H, Uchiyama K, Lin JM (2018) In Situ scatheless cell detachment reveals correlation between adhesion strength and viability at single-cell resolution. Angew Chem Int Ed 57(1):236–240

    Article  CAS  Google Scholar 

  12. Lin L, Lin X, Lin L, Feng Q, Kitamori T, Lin JM, Sun J (2017) Integrated microfluidic platform with multiple functions to probe tumor–endothelial cell interaction. Anal Chem 89(18):10037–10044

    Article  CAS  Google Scholar 

  13. Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634. https://doi.org/10.1021/ac0505977

    Article  CAS  PubMed  Google Scholar 

  14. Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  15. Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72:832–839

    Article  CAS  Google Scholar 

  16. Evander M, Johansson L, Lilliehorn T, Piskur J, Lindvall M, Johansson S, Almqvist M, Laurell T, Nilsson J (2007) Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal Chem 79(7):2984–2991. https://doi.org/10.1021/ac061576v

    Article  CAS  PubMed  Google Scholar 

  17. Matioli GT, Niewisch HB (1965) Electrophoresis of hemoglobin in single erythrocytes. Science 150(3705):1824–1826

    Article  CAS  Google Scholar 

  18. Osborne NN, Szczepaniak AC, Neuhoff V (1973) Amines and amino acids in identified neurons of Helix pomatia. Int J Neurosci 5(3):125–131

    Article  CAS  Google Scholar 

  19. McADOO DJ (1978) The Retzius cell of the leech hirudo medicinalis. In: Osborne NN (ed) Biochemistry of Characterised Neurons. Elsevier, Amsterdam

    Google Scholar 

  20. Lent CM, Mueller RL, Haycock DA (1983) Chromatographic and histochemical identification of dopamine within an identified neuron in the leech nervous-system. J Neurochem 41(2):481–490. https://doi.org/10.1111/j.1471-4159.1983.tb04766.x

    Article  CAS  PubMed  Google Scholar 

  21. McCaman RE, Weinreich D, Borys H (1973) Endogenous levels of acetylcholine and choline in individual neurons of Aplysia. J Neurochem 21(2):473–476

    Article  CAS  Google Scholar 

  22. Melamed MR, Lindmo T, Mendelsohn ML, Bigler RD (1991) Flow cytometry and sorting. Am J Clin Oncol 14(1):90

    Article  Google Scholar 

  23. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  Google Scholar 

  24. Kennedy RT, Stclaire RL, White JG, Jorgenson JW (1987) Chemical-analysis of single neurons by open tubular liquid-chromatography. Mikrochim Acta 2(1–3):37–45

    Article  CAS  Google Scholar 

  25. Wallingford RA, Ewing AG (1988) Capillary zone electrophoresis with electrochemical detection in 12.7-Mu-M diameter columns. Anal Chem 60(18):1972–1975. https://doi.org/10.1021/ac00169a027

    Article  CAS  Google Scholar 

  26. Croushore CA, Supharoek SA, Lee CY, Jakmunee J, Sweedler JV (2012) Microfluidic device for the selective chemical stimulation of neurons and characterization of peptide release with mass spectrometry. Anal Chem 84(21):9446–9452. https://doi.org/10.1021/ac302283u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rubakhin SS, Lanni EJ, Sweedler JV (2013) Progress toward single cell metabolomics. Curr Opin Biotechnol 24(1):95–104. https://doi.org/10.1016/j.copbio.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  28. Comi TJ, Do TD, Rubakhin SS, Sweedler JV (2017) Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J Am Chem Soc 139:3920–3929. https://doi.org/10.1021/jacs.6b12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ong TH, Kissick DJ, Jansson ET, Comi TJ, Romanova EV, Rubakhin SS, Sweedler JV (2015) Classification of large cellular populations and discovery of rare cells using single cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 87(14):7036–7042. https://doi.org/10.1021/acs.analchem.5b01557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Krylov S, Arriaga EA, Polakowski R, Dovichi NJ (2000) One-dimensional protein analysis of an HT29 human colon adenocarcinoma cell. Anal Chem 72(2):318–322

    Article  CAS  Google Scholar 

  31. Hu S, Le Z, Newitt R, Aebersold R, Kraly JR, Jones M, Dovichi NJ (2003) Identification of proteins in single-cell capillary electrophoresis fingerprints based on comigration with standard proteins. Anal Chem 75(14):3502–3505

    Article  CAS  Google Scholar 

  32. Zhu G, Sun L, Yan X, Dovichi NJ (2013) Single-shot proteomics using capillary zone electrophoresis–electrospray ionization-tandem mass spectrometry with production of more than 1 250 Escherichia coli peptide identifications in a 50 min separation. Anal Chem 85:2569–2573

    Article  CAS  Google Scholar 

  33. Qu Y, Sun L, Zhang Z, Dovichi NJ (2018) Site-specific glycan heterogeneity characterization by hydrophilic interaction liquid chromatography solid-phase extraction, reversed-phase liquid chromatography fractionation, and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry. Anal Chem 90:1223–1233. https://doi.org/10.1021/acs.analchem.7b03912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sibbitts J, Sellens KA, Jia S, Klasner SA, Culbertson CT (2018) Cellular analysis using microfluidics. Anal Chem 90(1):65–85. https://doi.org/10.1021/acs.analchem.7b04519

    Article  CAS  PubMed  Google Scholar 

  35. Armbrecht L, Dittrich PS (2017) Recent advances in the analysis of single cells. Anal Chem 89(1):2–21

    Article  CAS  Google Scholar 

  36. Lin L, Chen QH, Sun JS (2018) Micro/nanofluidics-enabled single-cell biochemical analysis. TrAC-Trend Anal Chem 99:66–74. https://doi.org/10.1016/j.trac.2017.11.017

    Article  CAS  Google Scholar 

  37. Shear JB, Fishman HA, Allbritton NL, Garigan D, Zare RN, Scheller RH (1995) Single cells as biosensors for chemical separations. Science 267(5194):74–77. https://doi.org/10.1126/science.7809609

    Article  CAS  PubMed  Google Scholar 

  38. Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN (2007) Counting low-copy number proteins in a single cell. Science 315(5808):81–84. https://doi.org/10.1126/science.1133992

    Article  CAS  PubMed  Google Scholar 

  39. Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201. https://doi.org/10.1146/annurev-bioeng-070909-105238

    Article  CAS  PubMed  Google Scholar 

  40. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75(14):3581–3586

    Article  CAS  Google Scholar 

  41. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82(3):967–973. https://doi.org/10.1021/ac902218y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75(21):5646–5655. https://doi.org/10.1021/ac0346510

    Article  CAS  PubMed  Google Scholar 

  43. Broyles BS, Jacobson SC, Ramsey JM (2003) Sample filtration, concentration, and separation integrated on microfluidic devices. Anal Chem 75(11):2761–2767

    Article  CAS  Google Scholar 

  44. Liu C, Liu J, Gao D, Ding M, Lin J-M (2010) Fabrication of microwell arrays based on two-dimensional ordered polystyrene microspheres for high-throughput single-cell analysis. Anal Chem 82(22):9418–9424

    Article  CAS  Google Scholar 

  45. Chen Q, Wu J, Zhang Y, Lin Z, Lin J-M (2012) Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12(24):5180–5185

    Article  CAS  Google Scholar 

  46. Liu J, Gao D, Mao S, Lin J-M (2012) A microfluidic photolithography for controlled encapsulation of single cells inside hydrogel microstructures. Sci China Chem 55(4):494–501

    Article  CAS  Google Scholar 

  47. Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249

    Article  Google Scholar 

  48. Thompson AM, Paguirigan AL, Kreutz JE, Radich JP, Chiu DT (2014) Microfluidics for single-cell genetic analysis. Lab Chip 14(17):3135–3142. https://doi.org/10.1039/c4lc00175c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52. https://doi.org/10.1007/s10404-013-1291-9

    Article  Google Scholar 

  50. Chen Y, Li P, Huang PH, Xie Y, Mai JD, Wang L, Nguyen NT, Huang TJ (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645. https://doi.org/10.1039/c3lc90136j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Autebert J, Coudert B, Bidard FC, Pierga JY, Descroix S, Malaquin L, Viovy JL (2012) Microfluidic: an innovative tool for efficient cell sorting. Methods 57(3):297–307. https://doi.org/10.1016/j.ymeth.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  52. Mehrishi JN, Bauer J (2002) Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23(13):1984–1994. https://doi.org/10.1002/1522-2683(200207)23:13%3c1984:AID-ELPS1984%3e3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  53. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454. https://doi.org/10.1146/annurev.bioeng.8.061505.095739

    Article  CAS  PubMed  Google Scholar 

  54. Shim S, Stemke-Hale K, Noshari J, Becker FF, Gascoyne PRC (2013) Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics 7(1):011808. https://doi.org/10.1063/1.4774307

    Article  CAS  PubMed Central  Google Scholar 

  55. Burguillos MA, Magnusson C, Nordin M, Lenshof A, Augustsson P, Hansson MJ, Elmer E, Lilja H, Brundin P, Laurell T, Deierborg T (2013) Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells. PLoS ONE 8(5):e64233. https://doi.org/10.1371/journal.pone.0064233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skowronek V, Rambach RW, Schmid L, Haase K, Franke T (2013) Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Anal Chem 85(20):9955–9959. https://doi.org/10.1021/ac402607p

    Article  CAS  PubMed  Google Scholar 

  57. Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46:379–406. https://doi.org/10.1146/annurev-fluid-010313-141418

    Article  Google Scholar 

  58. Ding X, Li P, Lin SC, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ (2013) Surface acoustic wave microfluidics. Lab Chip 13(18):3626–3649. https://doi.org/10.1039/c3lc50361e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156. https://doi.org/10.1103/PhysRevLett.24.156

    Article  CAS  Google Scholar 

  60. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288

    Article  CAS  Google Scholar 

  61. Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851. https://doi.org/10.1002/elps.200800484

    Article  CAS  PubMed  Google Scholar 

  62. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228. https://doi.org/10.1146/annurev.biochem.77.043007.090225

    Article  CAS  PubMed  Google Scholar 

  63. Plouffe BD, Murthy SK, Lewis LH (2015) Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phys 78(1):016601. https://doi.org/10.1088/0034-4885/78/1/016601

    Article  CAS  PubMed  Google Scholar 

  64. Hejazian M, Li W, Nguyen NT (2015) Lab on a chip for continuous-flow magnetic cell separation. Lab Chip 15(4):959–970. https://doi.org/10.1039/c4lc01422g

    Article  CAS  PubMed  Google Scholar 

  65. Zborowski M, Chalmers JJ (2011) Rare cell separation and analysis by magnetic sorting. Anal Chem 83(21):8050–8056. https://doi.org/10.1021/ac200550d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5):655–658. https://doi.org/10.1039/b515371a

    Article  CAS  PubMed  Google Scholar 

  67. McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158. https://doi.org/10.1039/c4lc00939h

    Article  CAS  PubMed  Google Scholar 

  68. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046. https://doi.org/10.1039/b912547g

    Article  CAS  PubMed  Google Scholar 

  69. Martel JM, Toner M (2014) Inertial focusing in microfluidics. Annu Rev Biomed Eng 16:371–396. https://doi.org/10.1146/annurev-bioeng-121813-120704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geislinger TM, Franke T (2014) Hydrodynamic lift of vesicles and red blood cells in flow—from Fåhræus & Lindqvist to microfluidic cell sorting. Adv Colloid Interfac 208:161–176

    Article  CAS  Google Scholar 

  71. Huang Q, Mao S, Khan M, Zhou Z, Lin J-M (2018) Dean flow assisted-cell ordering system for lipid profiling in single-cells using mass spectrometry. Chem Commun 54:2595–2598

    Article  CAS  Google Scholar 

  72. Nilsson J, Evander M, Hammarstrom B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157. https://doi.org/10.1016/j.aca.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  73. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Article  CAS  Google Scholar 

  74. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584. https://doi.org/10.1126/science.1076996

    Article  CAS  PubMed  Google Scholar 

  75. Kim S-H, Lee GH, Park JY (2013) Microwell fabrication methods and applications for cellular studies. Biomed Eng Lett 3(3):131–137

    Article  Google Scholar 

  76. Lindström S, Andersson-Svahn A (2011) Miniaturization of biological assays—overview on microwell devices for single-cell analyses. BBA-Gen Subjects 1810(3):308–316

    Article  Google Scholar 

  77. Lutz BR, Chen J, Schwartz DT (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78(15):5429–5435. https://doi.org/10.1021/ac060555y

    Article  CAS  Google Scholar 

  78. Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7(2):21501. https://doi.org/10.1063/1.4799787

    Article  CAS  PubMed  Google Scholar 

  79. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. https://doi.org/10.1126/science.1109164

    Article  CAS  PubMed  Google Scholar 

  80. Tran TM, Lan F, Thompson CS, Abate AR (2013) From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology. J Phys D Appl Phys 46(11):114004. https://doi.org/10.1088/0022-3727/46/11/114004

    Article  CAS  Google Scholar 

  81. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155. https://doi.org/10.1039/c2lc21147e

    Article  CAS  PubMed  Google Scholar 

  82. Brown RB, Audet J (2008) Current techniques for single-cell lysis. J R Soc Interface 5 Suppl 2(Suppl 2):S131–138. https://doi.org/10.1098/rsif.2008.0009.focus

  83. Nan L, Jiang Z, Wei X (2014) Emerging microfluidic devices for cell lysis: a review. Lab Chip 14(6):1060–1073. https://doi.org/10.1039/c3lc51133b

    Article  CAS  PubMed  Google Scholar 

  84. Kotlowski R, Martin A, Ablordey A, Chemlal K, Fonteyne PA, Portaels F (2004) One-tube cell lysis and DNA extraction procedure for PCR-based detection of Mycobacterium ulcerans in aquatic insects, molluscs and fish. J Med Microbiol 53(Pt 9):927–933. https://doi.org/10.1099/jmm.0.45593-0

    Article  CAS  PubMed  Google Scholar 

  85. Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78(9):3084–3089. https://doi.org/10.1021/ac0519460

    Article  CAS  PubMed  Google Scholar 

  86. Cichova M, Proksova M, Tothova L, Santha H, Mayer V (2012) On-line cell lysis of bacteria and its spores using a microfluidic biochip. Cent Eur J Biol 7(2):230–240. https://doi.org/10.2478/s11535-012-0005-8

    Article  Google Scholar 

  87. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67(5):2354–2359. https://doi.org/10.1128/AEM.67.5.2354-2359.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sad S, Dudani R, Gurnani K, Russell M, van Faassen H, Finlay B, Krishnan L (2008) Pathogen proliferation governs the magnitude but compromises the function of CD8 T cells. J Immunol 180(9):5853–5861

    Article  CAS  Google Scholar 

  89. Doebler RW, Erwin B, Hickerson A, Irvine B, Woyski D, Nadim A, Sterling JD (2009) Continuous-flow, rapid lysis devices for biodefense nucleic acid diagnostic systems. Jala 14(3):119–125. https://doi.org/10.1016/j.jala.2009.02.010

    Article  CAS  Google Scholar 

  90. Weaver JC (2000) Electroporation of cells and tissues. IEEE T Plasma Sci 28(1):24–33. https://doi.org/10.1109/27.842820

    Article  CAS  Google Scholar 

  91. Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE T Dielect El In 10(5):754–768. https://doi.org/10.1109/Tdei.2003.1237325

    Article  CAS  Google Scholar 

  92. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60(2):297–306. https://doi.org/10.1016/S0006-3495(91)82054-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hjouj M, Last D, Guez D, Daniels D, Sharabi S, Lavee J, Rubinsky B, Mardor Y (2012) MRI study on reversible and irreversible electroporation induced blood brain barrier disruption. PLoS ONE 7(8):e42817. https://doi.org/10.1371/journal.pone.0042817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385(3):474–485. https://doi.org/10.1007/s00216-006-0327-3

    Article  CAS  PubMed  Google Scholar 

  95. Wang S, Lee LJ (2013) Micro-/nanofluidics based cell electroporation. Biomicrofluidics 7(1):11301. https://doi.org/10.1063/1.4774071

    Article  CAS  PubMed  Google Scholar 

  96. Vogel A, Busch S, Jungnickel K, Birngruber R (1994) Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med 15(1):32–43

    Article  CAS  Google Scholar 

  97. Shaw S, Jin Y, Schiffers W, Emmony D (1996) The interaction of a single laser-generated cavity in water with a solid surface. J Acoust Soc Am 99(5):2811–2824

    Article  Google Scholar 

  98. Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, Hammer DX, Noojin GD, Rockwell BA, Birngruber R (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B-Lasers O 68(2):271–280. https://doi.org/10.1007/s003400050617

    Article  CAS  Google Scholar 

  99. Sims CE, Meredith GD, Krasieva TB, Berns MW, Tromberg BJ, Allbritton NL (1998) Laser-micropipet combination for single-cell analysis. Anal Chem 70(21):4570–4577

    Article  CAS  Google Scholar 

  100. Dhawan MD, Wise F, Baeumner AJ (2002) Development of a laser-induced cell lysis system. Anal Bioanal Chem 374(3):421–426. https://doi.org/10.1007/s00216-002-1489-2

    Article  CAS  PubMed  Google Scholar 

  101. Quinto-Su PA, Lai HH, Yoon HH, Sims CE, Allbritton NL, Venugopalan V (2008) Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip 8(3):408–414. https://doi.org/10.1039/b715708h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cordero N, West J, Berney H (2003) Thermal modelling of Ohmic heating microreactors. Microelectron J 34(12):1137–1142. https://doi.org/10.1016/S0026-2692(03)00204-0

    Article  CAS  Google Scholar 

  103. Fu R, Xu B, Li D (2006) Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye. Int J Therm Sci 45(9):841–847. https://doi.org/10.1016/j.ijthermalsci.2005.11.009

    Article  CAS  Google Scholar 

  104. Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70(1):158–162

    Article  CAS  Google Scholar 

  105. Zhu K, Jin H, Ma Y, Ren Z, Xiao C, He Z, Zhang F, Zhu Q, Wang B (2005) A continuous thermal lysis procedure for the large-scale preparation of plasmid DNA. J Biotechnol 118(3):257–264. https://doi.org/10.1016/j.jbiotec.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  106. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354. https://doi.org/10.1038/nature12626

    Article  CAS  Google Scholar 

  107. Junker JP, Noel ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J, van Oudenaarden A (2014) Genome-wide RNA Tomography in the zebrafish embryo. Cell 159(3):662–675. https://doi.org/10.1016/j.cell.2014.09.038

    Article  CAS  PubMed  Google Scholar 

  108. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233):aaa6090. https://doi.org/10.1126/science.aaa6090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Q., Lin, JM. (2019). Advances of Single-Cell Analysis on Microfluidics. In: Lin, JM. (eds) Microfluidics for Single-Cell Analysis. Integrated Analytical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9729-6_1

Download citation

Publish with us

Policies and ethics