Skip to main content

Biofilms: A Phenotypic Mechanism of Bacteria Conferring Tolerance Against Stress and Antibiotics

  • Chapter
  • First Online:
Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions

Abstract

Biofilm, as a heterogenous congregation of microbial cells enclosed within a pellicle, has largely gained attention due to their historical importance in environment as sludges, flocs, slimes, etc. Biofilms in medical research have been an active area of research in periodontics, in wounds, and in surgical implants. With the availability of whole genome sequences, it is now evident that the mechanisms that control biofilm formation have largely remained conserved during the course of evolution, pointing to the fact that biofilm formation is an integral part in the lifecycle of any unicellular organism. The ability to easily inter-switch between planktonic to a sessile life cycle is an important armor for these unicellular organisms to overcome stress. The matrix not only acts a physical barrier that protects the bacteria but also provides an ecological niche for close interaction and communication among these unicellular entities. This coordinated community-like behavior synchronizes metabolic upregulation or downregulation, both in time and space, and allows these microorganisms to achieve physiological proficiency in terms of ability to tolerate stress that might not be possible as a single cell. Research on biofilms from the perspective to explore the mechanisms of drug tolerance is now considered an apt model as compared to the use of planktonic microorganisms. The increasing use of medical implants further necessitates the need to accelerate research in anti-biofilm strategies for these medical devices. This chapter presents an overview of the mechanisms of biofilm formation and the various interventions for prevention of biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette transporters

CaCl2 :

Calcium chloride

cAMP:

Cyclic adenosine monophosphate

DNA:

Deoxyribonucleic acid

FDA:

Food and Drug Administration

GMP:

Guanosine monophosphate

kHz:

Kilohertz

MgSO4 :

Magnesium sulfate

NaCl:

Sodium chloride

RNA:

Ribonucleic acid

References

  • Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145(1):39–53

    Article  CAS  Google Scholar 

  • Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216

    Article  Google Scholar 

  • Becker P, Hufnagle W, Peters G, Herrmann M (2001) Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol 67(7):2958–2965

    Article  CAS  Google Scholar 

  • Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4(1):pii. E14

    Article  Google Scholar 

  • Bogino PC, Oliva Mde L, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 214(8):15838–15859

    Article  Google Scholar 

  • Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923

    Article  Google Scholar 

  • Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6(8):e1001036

    Article  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  • Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N (2012) In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56(5):2683–2690

    Article  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236(2):163–173

    Article  CAS  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524

    Article  CAS  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15(12):740–755

    Article  CAS  Google Scholar 

  • Kristian SA, Birkenstock TA, Sauder U, Mack D, Götz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197(7):1028–1035

    Article  Google Scholar 

  • Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 307(8):481–489

    Article  CAS  Google Scholar 

  • Kumar A, Alam A, Grover S, Pandey S, Tripathi D, Kumari M, Rani M, Singh A, Akhter Y, Ehtesham NZ, Hasnain SE (2019) Peptidyl-prolyl isomerase-B is involved in Mycobacterium tuberculosis biofilm formation and a generic target for drug repurposing-based intervention. NPJ Biofilms Microbiomes 5:3

    Article  Google Scholar 

  • Lebeer S, De Keersmaecker SC, Verhoeven TL, Fadda AA, Marchal K, Vanderleyden J (2007) Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. J Bacteriol 189(3):860–871

    Article  CAS  Google Scholar 

  • Marsden AE, Grudzinski K, Ondrey JM, DeLoney-Marino CR, Visick KL (2017) Impact of salt and nutrient content on biofilm formation by Vibrio fischeri. PLoS One 12(1):e0169521

    Article  Google Scholar 

  • McDonough KA, Rodriguez A (2012) The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 10(1):27–38

    Article  CAS  Google Scholar 

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10(1):39–50

    Article  CAS  Google Scholar 

  • Mohamed JA, Huang DB (2007) Biofilm formation by enterococci. J Med Microbiol 56(12):1581–1588

    Article  CAS  Google Scholar 

  • Newman JA, Rodrigues C, Lewis RJ (2013) Molecular basis of the activity of SinR, the master regulator of biofilm formation in Bacillus subtilis. J Biol Chem 288(15):10766–10778

    Article  CAS  Google Scholar 

  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci 110(44):17981–17986

    Article  Google Scholar 

  • Ong KS, Mawang CI, Daniel-Jambun D, Lim YY, Lee SM (2018) Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev Anti-Infect Ther 16(11):855–864

    Article  CAS  Google Scholar 

  • Orgad O, Oren Y, Walker SL, Herzberg M (2011) The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment. Biofouling 27(7):787–798

    Article  CAS  Google Scholar 

  • Pandey S, Sharma A, Tripathi D, Kumar A, Khubaib M, Bhuwan M, Chaudhuri TK, Hasnain SE, Ehtesham NZ (2016) Mycobacterium tuberculosis peptidyl-prolyl isomerases also exhibit chaperone like activity in-vitro and in-vivo. PLoS One 11(3):e0150288

    Article  Google Scholar 

  • Pandey S, Tripathi D, Khubaib M, Kumar A, Sheikh JA, Sumanlatha G, Ehtesham NZ, Hasnain SE (2017) Mycobacterium tuberculosis peptidyl-prolyl isomerases are immunogenic, alter cytokine profile and aid in intracellular survival. Front Cell Infect Microbiol 7:38

    Article  Google Scholar 

  • Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, Cyranka-Czaja A, Wojciechowski M (2013) Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol 13:131

    Article  CAS  Google Scholar 

  • Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci 107(5):2230–2234

    Article  CAS  Google Scholar 

  • Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  Google Scholar 

  • Stalder T, Top E (2016) Plasmid transfer in biofilms: a perspective on limitations and oppurtunities. NPJ Biofilms Microbiomes 2:16022

    Article  Google Scholar 

  • Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453(2):254–267

    Article  CAS  Google Scholar 

  • Tolker-Nielsen T (2015) Biofilm development. Microbiol Spectr 3(2):MB-0001-2014

    PubMed  Google Scholar 

  • Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PØ, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, Tolker-Nielsen T, Pier GB, Høiby N, Givskov M, Bjarnsholt T (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117(7):537–546

    Article  Google Scholar 

  • Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9(9):2230–2241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed E. Hasnain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, A., Kumar, A., Tripathi, P., Ehtesham, N.Z., Hasnain, S.E. (2019). Biofilms: A Phenotypic Mechanism of Bacteria Conferring Tolerance Against Stress and Antibiotics. In: Hasnain, S., Ehtesham, N., Grover, S. (eds) Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-32-9413-4_18

Download citation

Publish with us

Policies and ethics