Skip to main content

Flow Fields and Heat Transfer Associated with an Acoustically Levitated Droplet

  • Chapter
  • First Online:
Acoustic Levitation

Abstract

Considering the potential applications, a better understanding of the flow fields in an acoustically levitated droplet is of great significance in scientific fields. The flow generated by a nonlinear acoustic field is known as acoustic streaming. Using acoustic levitation, multi-scale acoustic streaming can be induced both inside and outside the droplet. In the internal flow field, the streaming configuration is affected by the physical properties of the droplet, i.e., the droplet diameter and rotation. The external flow field can be characterized by the applied sound pressure, physical properties of the droplet, and surrounding gas. These flow fields play an important role in the heat and mass transfer of the levitated droplet. This chapter provides a comprehensive review of the flow fields, the general theory of acoustic streaming, and an understanding of the heat transfer/mixing enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Lighthill, Acoustic streaming. J. Sound Vib. 61(3), 391–418 (1978)

    Article  Google Scholar 

  2. R. Green, M. Ohlin, M. Wiklund, T. Laurell, A. Lenshof, Applications of Acoustic Streaming (Royal Society of Chemistry, London, 2014), pp. 312–336

    Google Scholar 

  3. S.K. Chung, E.H. Trinh, Containerless protein crystal growth in rotating levitated drops. J. Cryst. Growth 194(3–4), 384–397 (1998)

    Article  Google Scholar 

  4. E.H. Trinh, J.L. Robey, Experimental study of streaming flows associated with ultrasonic levitators. Phys. Fluids 6(11), 3567–3579 (1994)

    Article  Google Scholar 

  5. A. Rednikov, N. Riley, A simulation of streaming flows associated with acoustic levitators. Phys. Fluids 14(4), 1502–1510 (2002)

    Article  Google Scholar 

  6. A.Y. Rednikov, H. Zhao, S.S. Sadhal, E.H. Trinh, Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Math. 59(3), 377–397 (2006)

    Article  MathSciNet  Google Scholar 

  7. A.Y. Rednikov, S.S. Sadhal, Steady streaming from an oblate spheroid due to vibrations along its axis. J. Fluid Mech. 499, 345–380 (2004)

    Article  MathSciNet  Google Scholar 

  8. H. Zhao, S.S. Sadhal, E.H. Trinh, Singular perturbation analysis of an acoustically levitated sphere: flow about the velocity node. J. Acoust. Soc. Am. 106(2), 589–595 (1999)

    Article  Google Scholar 

  9. H. Zhao, S.S. Sadhal, E.H. Trinh, Internal circulation in a drop in an acoustic field. J. Acoust. Soc. Am. 106(6), 3289–3295 (1999)

    Article  Google Scholar 

  10. A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, Evaporation of acoustically levitated droplets. J. Fluid Mech. 399, 151–204 (1999)

    Article  Google Scholar 

  11. A.L. Yarin, G. Brenn, D. Rensink, Evaporation of acoustically levitated droplets of binary liquid mixtures. Int. J. Heat Fluid Flow 23(4), 471–486 (2002)

    Article  Google Scholar 

  12. K. Hasegawa, Y. Abe, A. Fujiwara, Y. Yamamoto, K. Aoki, External flow of an acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 261 (2008)

    Article  Google Scholar 

  13. Y. Yamamoto, Y. Abe, A. Fujiwara, K. Hasegawa, K. Aoki, Internal flow of acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 277 (2008)

    Article  Google Scholar 

  14. K. Hasegawa, Y. Abe, A. Kaneko, Y. Yamamoto, K. Aoki, Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)

    Article  Google Scholar 

  15. K. Hasegawa, Y. Abe, A. Goda, Microlayered flow structure around an acoustically levitated droplet under a phase-change process. npj Microgravity 2, 16004 (2016)

    Google Scholar 

  16. S. Santesson, S. Nilsson, Airborne chemistry: acoustic levitation in chemical analysis. Anal. Bioanal. Chem. 378(7), 1704–1709 (2004)

    Article  Google Scholar 

  17. V. Vandaele, P. Lambert, A. Delchambre, Non-contact handling in microassembly: acoustical levitation. Precis. Eng. 29(4), 491–505 (2005)

    Article  Google Scholar 

  18. F. Priego-Capote, L. de Castro, Ultrasound-assisted levitation: lab-on-a-drop. TrAC Trends Anal. Chem. 25(9), 856–867 (2006)

    Article  Google Scholar 

  19. L. Puskar, R. Tuckermann, T. Frosch, J. Popp, V. Ly, D. McNaughton, B.R. Wood, Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. Lab Chip 7(9), 1125–1131 (2007)

    Article  Google Scholar 

  20. A. Scheeline, R.L. Behrens, Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys. Chem. 165, 1–2 (2012)

    Article  Google Scholar 

  21. D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Acoustophoretic contactless transport and handling of matter in air. Proc. Nat. Acad. Sci. 110(31), 12549–12554 (2013)

    Article  Google Scholar 

  22. E.T. Chainani, W.H. Choi, K.T. Ngo, A. Scheeline, Mixing in colliding, ultrasonically levitated drops. Anal. Chem. 86(4), 2229–2237 (2014)

    Article  Google Scholar 

  23. C. Bouyer, P. Chen, S. Güven, T.T. Demirtaş, T.J. Nieland, F. Padilla, U. Demirci, A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater. 1, 161–167 (2016)

    Article  Google Scholar 

  24. T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward contactless biology: Acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016)

    Article  Google Scholar 

  25. A. Marzo, B.W. Drinkwater, Holographic acoustic tweezers. Proc. Nat. Acad. Sci. 116(1), 84–89 (2019)

    Article  Google Scholar 

  26. L. Rayleigh, On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175, 1–21 (1884)

    MATH  Google Scholar 

  27. S.S. Sadhal, Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12(13), 2292–2300 (2012)

    Article  Google Scholar 

  28. Tatsuno M (1982) Secondary streaming induced by an oscillating cylinder, in An Album of Fluid Motion, vol. 31

    Google Scholar 

  29. H. Schlichting, Berechnung ebener periodischer Grenzschichtstromungen. Phys. z. 33, 327–335 (1932)

    MATH  Google Scholar 

  30. S.S. Sadhal, Acoustofluidics 15: streaming with sound waves interacting with solid particles. Lab Chip 12(15), 2600–2611 (2012)

    Article  Google Scholar 

  31. S.S. Sadhal, Acoustofluidics 16: acoustics streaming near liquid–gas interfaces: drops and bubbles. Lab Chip 12(16), 2771–2781 (2012)

    Article  Google Scholar 

  32. K. Hasegawa, Y. Abe, A. Kaneko, K. Aoki, PIV measurement of internal and external flow of an acoustically levitated droplet. Int. J. Transp. Phenom. 12(3–4), 151–160 (2011)

    Google Scholar 

  33. K. Shitanishi, K. Hasegawa, A. Kaneko, Y. Abe, Study on heat transfer and flow characteristic under phase-change process of an acoustically levitated droplet. Microgravity Sci. Technol. 26(5), 305–312 (2014)

    Article  Google Scholar 

  34. A. Gopinath, A.F. Mills, Convective heat transfer from a sphere due to acoustic streaming. J. Heat Transf. 115, 332–341 (1993)

    Article  Google Scholar 

  35. Y. Niimura, K. Hasegawa, Evaporation of droplet in mid-air: pure and binary droplets in single-axis acoustic levitator. PLoS ONE 14(2), e0212074 (2019)

    Article  Google Scholar 

  36. W.E. Ranz, W.R. Marshall, Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952)

    Google Scholar 

  37. S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18(2), 361–371 (1972)

    Article  Google Scholar 

  38. A. Watanabe, K. Hasegawa, Y. Abe, Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation. Sci. Rep. 8(1), 10221 (2018)

    Article  Google Scholar 

  39. C.L. Shen, W.J. Xie, B. Wei, Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)

    Article  Google Scholar 

  40. B. Carroll, C. Hidrovo, Droplet collision mixing diagnostics using single fluorophore LIF. Exp. Fluids 53(5), 1301–1316 (2012)

    Article  Google Scholar 

  41. C.L. Shen, W.J. Xie, Z.L. Yan, B. Wei, Internal flow of acoustically levitated drops undergoing sectorial oscillations. Phys. Lett. A 374(39), 4045–4048 (2010)

    Article  Google Scholar 

  42. C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Diffusion coefficient measurements in microfluidic devices. Talanta 56(2), 365–373 (2002)

    Article  Google Scholar 

  43. J.M. Ottino, The kinematics of mixing: stretching, chaos, and transport (Cambridge University Press, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Hasegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasegawa, K. (2020). Flow Fields and Heat Transfer Associated with an Acoustically Levitated Droplet. In: Zang, D. (eds) Acoustic Levitation. Springer, Singapore. https://doi.org/10.1007/978-981-32-9065-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9065-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9064-8

  • Online ISBN: 978-981-32-9065-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics