Skip to main content

Design of Single-Axis Acoustic Levitators

  • Chapter
  • First Online:
Acoustic Levitation
  • 1106 Accesses

Abstract

In this chapter, a numerical procedure based on the finite element method (FEM) is presented for simulating and designing single-axis acoustic levitators. We first present an overview of the equations governing the propagation of mechanical waves in solids, piezoelectric materials and the air medium. We then show how axisymmetric models based on FEM can be utilized for simulating piezoelectric transducers and the acoustic cavity of the levitator. To illustrate the design procedure, the finite element method is applied to simulate and design a 25-kHz bolt-clamped Langevin-type transducer. The FEM is also used to design a resonant single-axis acoustic levitator and to investigate the behavior of a non-resonant acoustic levitator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.A.B. Andrade, N. Pérez, J.C. Adamowski, Review of progress in acoustic levitation. Braz. J. Phys. 48(2), 190–213 (2018)

    Article  Google Scholar 

  2. L. Meng, F. Cai, F. Li, W. Zhou, L. Niu, H. Zheng, Acoustic tweezers. J. Phys. D Appl. Phys. 52(27), 273001 (2019)

    Article  Google Scholar 

  3. E.H. Brandt, Acoustic physics. Suspended by sound. Nature 413(6855), 474–475 (2001)

    Article  Google Scholar 

  4. W.J. Xie, B. Wei, Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79(6), 881–883 (2001)

    Article  Google Scholar 

  5. R.R. Whymark, Acoustic field positioning for containerless processing. Ultrasonics 13(6), 251–261 (1975)

    Article  Google Scholar 

  6. Y. Hashimoto, Y. Koike, S. Ueha, Acoustic levitation of planar objects using a longitudinal vibration mode. J. Acoust. Soc. Japan 16(3), 189–192 (1995)

    Article  Google Scholar 

  7. Y. Hashimoto, Y. Koike, S. Ueha, Near-field acoustic levitation of planar specimens using flexural vibration. J. Acoust. Soc. Am. 100(4), 2057–2061 (1996)

    Article  Google Scholar 

  8. S. Ueha, Y. Hashimoto, Y. Koike, Non-contact transportation using near-field acoustic levitation. Ultrasonics 38(1), 26–32 (2000)

    Article  Google Scholar 

  9. A. Marzo, B.W. Drinkwater, Holographic acoustic tweezers. Proc. Natl. Acad. Sci. 116(1), 84–89 (2019)

    Article  Google Scholar 

  10. A. Marzo, A. Ghobrial, L. Cox, M. Caleap, A. Croxford, B.W. Drinkwater, Realization of compact tractor beams using acoustic delay-lines. Appl. Phys. Lett. 110(1), 014102 (2017)

    Article  Google Scholar 

  11. E.H. Trinh, Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instrum. 56(11), 2059–2065 (1985)

    Article  Google Scholar 

  12. M.A.B. Andrade, F.C. Buiochi, J. Adamowski, Finite element analysis and optimization of a single-axis acoustic levitator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(2), 469–479 (2010)

    Article  Google Scholar 

  13. J.K.R. Weber, C.A. Rey, J. Neuefeind, C.J. Benmore, Acoustic levitator for structure measurements on low temperature liquid droplets. Rev. Sci. Instrum. 80(8), 083904 (2009)

    Article  Google Scholar 

  14. A. Marzo, A. Barnes, B.W. Drinkwater, TinyLev: a multi-emitter single-axis acoustic levitator. Rev. Sci. Instrum. 88(8), 085105 (2017)

    Article  Google Scholar 

  15. A. Marzo, T. Corkett, B.W. Drinkwater, Ultraino: an open phased-array system for narrowband airborne ultrasound transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 102–111 (2018)

    Article  Google Scholar 

  16. C.A. Rey, D.R. Merkley, G.R. Hammarlund, T.J. Danley, Acoustic levitation technique for contairnerless processing at high temperatures in space. Metall. Trans. A 19(11), 2619–2623 (1988)

    Article  Google Scholar 

  17. M.A.B. Andrade, N. Pérez, J.C. Adamowski, Particle manipulation by a non-resonant acoustic levitator. Appl. Phys. Lett. 106(1), 014101 (2015)

    Article  Google Scholar 

  18. W.J. Xie, C.D. Cao, Y.J. Lü, B. Wei, Levitation of iridium and liquid mercury by ultrasound. Phys. Rev. Lett. 89(10), 104304 (2002)

    Article  Google Scholar 

  19. J.A. Gallego-Juarez, Piezoelectric ceramics and ultrasonic transducers. J. Phys. E: Sci. Instrum. 22(10), 804–816 (1989)

    Article  Google Scholar 

  20. A. Abdullah, M. Shahini, A. Pak, An approach to design a high power piezoelectric ultrasonic transducer. J. Electroceramics 22(4), 369–382 (2009)

    Article  Google Scholar 

  21. W.J. Xie, B. Wei, Dependence of acoustic levitation capabilities on geometric parameters. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. 66(2), 026605 (2002)

    Article  Google Scholar 

  22. T.J. Chung, Applied Continuum Mechanics (Cambridge University Press, New York, 1996)

    MATH  Google Scholar 

  23. A.B. Auld, Acoustics Fields and Waves in Solids, vol. 1 (Wiley, New York, 1973)

    Google Scholar 

  24. D. Royer, E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  25. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics (Wiley, New York, 1999)

    Google Scholar 

  26. IEEE Standard on piezoelectricity, ANSI/IEEE Std. 176-1987 (The Institute of Electrical and and Electronics Engineers, New York, 1987)

    Google Scholar 

  27. Z.Y. Hong, W. Zhai, N. Yan, B. Wei, Measurement and simulation of acoustic radiation force on a planar reflector. J. Acoust. Soc. Am. 135(5), 2553–2558 (2014)

    Article  Google Scholar 

  28. L.P. Gor’kov, On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962)

    Google Scholar 

  29. M. Barmatz, P. Collas, Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. Acoust. Soc. Am. 77(March), 928–945 (1985)

    Article  MATH  Google Scholar 

  30. P. Collas, M. Barmatz, C. Shipley, Acoustic levitation in the presence of gravity. J. Acoust. Soc. Am. 86(2), 777–787 (1989)

    Article  Google Scholar 

  31. M.A.B. Andrade, T.S. Ramos, F.T.A. Okina, J.C. Adamowski, Nonlinear characterization of a single-axis acoustic levitator. Rev. Sci. Instrum. 85(4), 045125 (2014)

    Article  Google Scholar 

  32. R. Tuckermann, L. Puskar, M. Zavabeti, R. Sekine, D. McNaughton, Chemical analysis of acoustically levitated drops by Raman spectroscopy. Anal. Bioanal. Chem. 394(5), 1433–1441 (2009)

    Article  Google Scholar 

  33. S. Santesson, S. Nilsson, Airborne chemistry: acoustic levitation in chemical analysis. Anal. Bioanal. Chem. 378(7), 1704–1709 (2004)

    Article  Google Scholar 

  34. T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward contactless biology: acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016)

    Google Scholar 

  35. A. Scheeline, R.L. Behrens, Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys. Chem. 165–166, 1–12 (2012)

    Article  Google Scholar 

  36. D. Zang, Y. Yu, Z. Chen, X. Li, H. Wu, X. Geng, Acoustic levitation of liquid drops: dynamics, manipulation and phase transitions. Adv. Colloid Interface Sci. 243, 77–85 (2017)

    Article  Google Scholar 

  37. W. Di et al., Shape evolution and bubble formation of acoustically levitated drops. Phys. Rev. Fluids 3(10), 103606 (2018)

    Article  Google Scholar 

  38. M.A.B. Andrade, N. Pérez, J.C. Adamowski, Experimental study of the oscillation of spheres in an acoustic levitator. J. Acoust. Soc. Am. 136(4), 1518–1529 (2014)

    Article  Google Scholar 

  39. K. Hasegawa, K. Kono, Oscillation characteristics of levitated sample in resonant acoustic field. AIP Adv. 9(3), 035313 (2019)

    Article  Google Scholar 

  40. T. Fushimi, T.L. Hill, A. Marzo, B.W. Drinkwater, Nonlinear trapping stiffness of mid-air single-axis acoustic levitators. Appl. Phys. Lett. 113(3), 034102 (2018)

    Article  Google Scholar 

  41. C.R. Field, A. Scheeline, Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements. Rev. Sci. Instrum. 78(12), 125102 (2007)

    Article  Google Scholar 

  42. E.G. Lierke, Deformation and displacement of liquid drops in an optimized acoustic standing wave levitator. Acta Acust. United Acust. 88, 206–217 (2002)

    Google Scholar 

  43. A. Lenshof, M. Evander, T. Laurell, J. Nilsson, Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12(4), 684–695 (2012)

    Article  Google Scholar 

  44. B.W. Drinkwater, Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 16(13), 2360–2375 (2016)

    Article  Google Scholar 

  45. X. Ding et al., Surface acoustic wave microfluidics. Lab Chip 13(18), 3626 (2013)

    Article  Google Scholar 

  46. M.A.B. Andrade, A.L. Bernassau, J.C. Adamowski, Acoustic levitation of a large solid sphere. Appl. Phys. Lett. 109(4), 044101 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. B. Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, M.A.B. (2020). Design of Single-Axis Acoustic Levitators. In: Zang, D. (eds) Acoustic Levitation. Springer, Singapore. https://doi.org/10.1007/978-981-32-9065-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9065-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9064-8

  • Online ISBN: 978-981-32-9065-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics